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Germ cell tumors
Earlier studies determined that hemato-
logic somatic-type malignancies (HSTMs) 
and the primary mediastinal nonsemino-
mas (PMNs) from which they originate (1) 
may share an isochromosome 12p (dupli-
cation of the short arm of chromosome 
12) (2). Isochromosome 12p characterizes 
seminomas and nonseminomas regard-
less of anatomical site (3–6), while it is not 
a feature of hematologic malignancies (7). 
The current assumption is that elements 
present in the PMNs progress into HSTMs, 
possibly from hematopoietic foci within 
the yolk sac tumor component (8).

Effectively considering which cells 
give rise to germ cell tumors (GCTs) and 
blood cancers requires a brief introduction 
to the family of GCTs (9). GCTs comprise 
a seemingly heterogeneous group of neo-
plasms occurring at various anatomical 
localizations, both in females and males 

and affecting all ages. Although predom-
inantly localized in the gonads, GCTs can 
also occur extragonadally, usually along 
the midline of the body. Migrating primor-
dial germ cells (PGCs) during embryogen-
esis explains this midline positioning (10) 
(Figure 1). The untimely activation of the 
latent non-neoplastic germ cell develop-
mental program, also called reprogram-
ming, is a crucial mechanism in the patho-
genesis of GCTs (9). In migrating PGCs, 
reprogramming to teratomas may enable 
these cells to escape their normal fate of 
apoptosis (Figure 1). While these terato-
mas, usually occurring under age six, are 
benign, they are also prone to progression, 
most often toward yolk sac tumors and/or 
somatic-type malignancies.

The only GCTs that are malignant per 
se are seminomas and nonseminomas 
(type II); even these malignant GCTs are 
rarely initiated by mutations. Notably, late 

PGCs that escaped apoptosis after lodging 
in gonadal and thymic niches as well as the 
midline of the brain give rise to malignant 
GCTs. It is in the protective niches that the 
PGCs, called gonocytes once they arrive in 
the gonads, could complete their epigen-
etic reprogramming to late PGCs (9) and 
progress to the known precursor lesions: 
germ cell neoplasia in situ (GCNIS) of the 
testis, gonadoblastoma of the dysgenetic 
gonad/ovary, and a similar lesion in the 
thymus (11). The late PGCs/gonocytes 
progress by default toward seminomas. In 
contrast, when reprogrammed, a neoplas-
tic gonocyte gives rise to an embryonal car-
cinoma cell (ECC), which is the malignant 
counterpart to a naive embryonic stem cell 
and can give rise to the various histological 
elements of nonseminomas. Thus, trans-
formed late PGCs/gonocytes determine 
the malignant behavior of seminomas and 
nonseminomas, whereas reprogrammed 
normal early PGCs/gonocytes give rise to 
the usually benign pediatric GCTs (type I) 
(Figure 1).

Type II GCTs of the testis, ovary, thy-
mus, and midline of the brain, typically 
in postpubertal individuals, share histo-
logical and genetic features, appearing 
as pure seminomas or nonseminomas, 
and possessing gain of the short arm of 
chromosome 12 and other copy number 
variations (CNVs). At each anatomic site, 
the nonseminomas may develop somatic 
type malignancies, in particular sarco-
mas and small blue round cell tumors, 
which may share genetic hallmarks with 
their somatic counterparts.

The common precursor of 
PMNs and HSTMs
In this issue of the JCI, Taylor, Donoghue, 
et al. (12) assumed that the common pre-
cursor of PMNs and HSTMs was most like-
ly a transformed PGC reprogrammed into 
an ECC within the mediastinum/thymus. 
ECCs diverged into clones observed in the 
PMNs, and parallel clones, not detected in 
the PMNs, formed HSTMs (12), possibly 
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Some germ cell tumors (GCTs) in men develop into hematologic 
malignancies; however, the clonal origins of such malignancies remain 
unknown. In this issue of the JCI, Taylor, Donoghue, et al. unravel the 
clonal relationship between primary mediastinal nonseminomas (PMNs) 
and hematologic somatic-type malignancies (HSTMs). Whole-exome 
sequencing was used to construct phylogenetic trees of the PMNs and the 
ensuing HSTM clones. HSTMs were derived from multiple distinct clones 
not detected within the PMNs. Clones from PMNs and HSTMs shared a 
common precursor, arguably an embryonal carcinoma cell resulting from 
a reprogrammed primordial germ cell from the thymus. Mutational and 
copy number variation analysis of a large cohort of patients with PMNs also 
demonstrated a high prevalence of TP53 mutations not found in testicular 
nonseminomas. These data likely explain why patients with PMNs are 
frequently resistant to platinum-based chemotherapy and provide TP53 
mutations as potential targets.
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in Taylor, Donoghue, et al. men? This is 
consistent with the observation that over 
95% of patients with mediastinal type II 
GCTs are male (11). Why is that the case? 
The increased risk in males cannot be 
explained by a higher number of migrat-
ing PGCs in males than females, since the 
incidence of mediastinal type I GCTs, also 
derived from migrating PGCs, is slightly 
higher in females than males (16). Being 
male, so it seems, and more specifical-
ly having a Y chromosome, is the most 
important risk factor for a mediastinal type 
II GCT. This hypothesis is supported by 
data on GCT risk in forms of gonadal dys-
genesis with and without the Y chromo-
some. The Y chromosome, more precisely, 
gonadoblastoma on the Y region (GBY) 
with the multicopy testis-specific protein 
Y-linked gene (TSPY), increases the risk of 
developing a type II GCT up to 70-fold (19, 
20). Study of the pathogenesis of GCNIS 
and gonadoblastoma in dysgenetic gonads 
and cryptorchid testes incriminates coex-
pression of OCT3/4 and TSPY for promot-
ing neoplastic transformation of gonocytes 
in the developing testis (21–23). The same 

RAS signaling pathway is more frequent-
ly mutated (60%), and TP53 is mutated 
in about 5% (17). Taylor, Donoghue, and 
researchers (12) report that mediastinal 
type II GCTs have KRAS or NRAS muta-
tions in 37% and in TP53 mutations in 
61%. When complicated by hematologic 
malignancies, PMNs show KRAS or NRAS 
mutations in 63% and TP53 mutations in 
91%. Neoplastic PGCs may require these 
high mutation rates to survive within the 
extragonadal surrogate niches. The high 
rate of TP53 mutations in PMNs is probably 
an important factor underlying platinum 
resistance (18), as loss of function of p53 
permits accumulation of CNVs as well as 
mutations, and interferes with DNA-dam-
age-induced apoptosis. TP53 mutations 
may also contribute to the high rate of 
somatic-type malignancies in PMN.

Intriguing questions that 
remain
Taylor, Donoghue, and researchers (12) 
clarify some important issues; however, 
many intriguing questions remain, such 
as, why were all the patients evaluated 

via a (transient) yolk sac tumor stage. This 
disparate clonal pattern was not observed 
in the phylogenetic reconstructions of 
treatment-resistant testicular nonsemi-
nomas (13). However, it is consistent with 
the results of Dorssers et al. who found 
that metastases, to which the patient suc-
cumbed, were derived from a precursor 
ECC that was not detected in the primary 
testicular nonseminoma (14).

An important “bycatch” of Taylor, 
Donoghue, et al. (12) is the data on muta-
tions in primary mediastinal seminomas 
and PMNs, which allows comparison with 
similar data for primary type II GCTs of the 
testis and brain. Testicular type II GCTs 
have a low rate of driver mutations, which 
provide a growth advantage and occur 
mainly in the KIT/RAS signaling pathway 
(in about 30% of seminomas, and 10% of 
nonseminomas) (13, 15). These KIT and 
KRAS or NRAS mutations are mutually 
exclusive, and probably rarely initiating, 
but rather drive progression (9, 13, 16), con-
sistent with their increase with age (13). 
Accordingly, TP53 is virtually always wild 
type. In intracranial type II GCTs the KIT/

Figure 1. Model for the pathogenesis of type I and II germ cell tumors. PGCs give origin to extragonadal GCTs. During embryogenesis (shown here at 
week seven), early PGCs (PGC1, light blue) migrate from the yolk sac to the genital ridge, and along the midline of the body. Early PGCs undergo apop-
tosis, unless, very rarely, they are reprogrammed (R) to a primed embryonic stem cell (ESC, orange), the stem cell of type I GCTs, usually benign tera-
tomas. Type I GCTs can also develop in the genital ridge/developing gonads prior to completion of epigenetic reprogramming to late PGCs (PGC2, dark 
blue). Early PGCs escape apoptosis physiologically when they reach the niches in the genital ridge/developing gonad, and nonphysiologically when 
they lodge in the surrogate niches in the thymus or in the pineal gland/hypothalamus. In each of these niches, early PGCs can complete epigenetic 
reprogramming to become late PGCs/gonocytes. In the gonads their normal fate is spermatogenesis in the testis and oogenesis in the ovary. Rarely, 
late PGCs undergo malignant transformation (T) and form the precursor lesions for seminoma (PLS), a malignant GCT (black). A transformed late 
PGC/gonocyte may be reprogrammed into an ECC (purple), which is the malignant counterpart of a naive ESC, and becomes the stem cell that gives 
rise to the various components of a nonseminoma. In the thymus and the pineal gland/hypothalamus, late PGCs undergo apoptosis, unless they are 
transformed to the precursors of seminomas. Also, in these sites, transformed PGCs may be reprogrammed to ECCs, giving rise to nonseminomas, 
and in the thymus also hematologic malignancy.
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with oncogenic locus/gene (GBY/TSPY). 
Comparing type II GCTs in males with and 
without Klinefelter syndrome using sim-
ilar comparative approaches may reveal 
why the risk in Klinefelter syndrome is so 
much increased. Proving the hypotheti-
cal role of the thymic microenvironment 
in establishing hematopoietic lineages in 
PMN requires experimental testing. Flat-
tened organ cultures (27) of the thymus 
cocultured with human PGCs (28) might 
provide a feasible model system, as the 
thymus may have extended viability, and 
the culture conditions are easily defined 
and manipulated.

Conclusions and implications
Taylor, Donoghue, et al. (12) make two 
important points, both of which have clin-
ical implications. First, they show that the 
treatment-refractory HSTMs that may 
complicate PMNs as yet cannot be diag-
nosed from the primary tumor. Perhaps 
the founding clones should be searched 
for in the bone marrow or blood in high-
risk situations, such as PMN in patients 
with Klinefelter syndrome. Second, the 
high prevalence of TP53 mutations like-
ly explains the poor prognosis of PMN. 
Importantly, some of these mutations may 
be druggable.
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mechanism probably operates in the male 
thymus and midline brain.
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explain why these tumors are so rare in 
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