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Frameworks for defining lung fibroblast 
heterogeneity
Phenotypic heterogeneity of lung fibroblasts. Fibroblasts in the respi-
ratory tract represent a diverse group of cells with a high degree of 
plasticity. Their plasticity presents several challenges in studying 
specific functions, including homeostatic, immune-regulatory, tissue- 
repair, and fibrotic functions, which vary in different respiratory 
diseases. The lack of consistent nomenclature and of consensus 

genetic and/or protein markers has further complicated interpreta-
tion of findings and attribution of cellular activities to specific cell 
types. Fibroblasts belong to a broader group of related cells, referred 
to as “mesenchymal” and in some cases “stromal.” Mesenchymal 
cells are frequently identified by lack of lineage markers defining 
other major cell types in the respiratory tract, including epithelial 
cells (EpCAM, also called CD326), endothelial cells (PECAM1, also 
called CD31), and immune cells (PTPRC, also called CD45). In 
the respiratory tract, these mesenchymal cells include fibroblasts, 
bronchial smooth muscle cells, vascular smooth muscle cells, and 
pericytes. The expression of extracellular matrix–related (ECM- 
related) genes, including those encoding structural proteins (colla-
gens, proteoglycans, and other glycoproteins) and ECM-modifying 
proteases, characterizes mesenchymal cells. However, the specific 
genes expressed vary across cell types and depend on experimental 
conditions, treatments, and disease context.

Epithelial cells also undergo epithelial-mesenchymal transition 
(EMT), a process in which epithelial characteristics are downregu-
lated and fibroblast phenotypes are acquired. There is a wide range 
of EMT phenotypic presentations, where changes in gene expression 
and posttranslational regulatory mechanisms take place to enable 
induction of fibroblast-like cytoarchitecture and migratory capabil-
ity (1). Several studies reported a role for EMT in the etiology of lung 
disorders, through mediating developmental abnormalities, tissue 
fibrosis, and remodeling, suggesting a correlation between EMT 
and progression of pulmonary diseases, including asthma, chronic 
obstructive pulmonary disease (COPD), and lung fibrosis (2–4).

In recent years, there has been an explosion of interest in how fibroblasts initiate, sustain, and resolve inflammation across 
disease states. Fibroblasts contain heterogeneous subsets with diverse functionality. The phenotypes of these populations 
vary depending on their spatial distribution within the tissue and the immunopathologic cues contributing to disease 
progression. In addition to their roles in structurally supporting organs and remodeling tissue, fibroblasts mediate critical 
interactions with diverse immune cells. These interactions have important implications for defining mechanisms of disease 
and identifying potential therapeutic targets. Fibroblasts in the respiratory tract, in particular, determine the severity and 
outcome of numerous acute and chronic lung diseases, including asthma, chronic obstructive pulmonary disease, acute 
respiratory distress syndrome, and idiopathic pulmonary fibrosis. Here, we review recent studies defining the spatiotemporal 
identity of the lung-derived fibroblasts and the mechanisms by which these subsets regulate immune responses to insult 
exposures and highlight past, current, and future therapeutic targets with relevance to fibroblast biology in the context 
of acute and chronic human respiratory diseases. This perspective highlights the importance of tissue context in defining 
fibroblast-immune crosstalk and paves the way for identifying therapeutic approaches to benefit patients with acute and 
chronic pulmonary disorders.
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Organizing fibroblast types with respect to anatomical location 
is particularly useful for (a) identifying distinct activation states 
among various subtypes, which differentially regulate response 
to injury/insult, and (b) identifying precursor cells that can adopt 
these states and/or fates. Single-cell gene expression studies in 
both mice and humans have consistently identified at least two 
different broad types of Pdgfra-expressing fibroblasts, represent-
ing proximal and distal transcriptional profiles, regardless of dis-
ease state. Imaging of lung tissue with RNA in situ hybridization 
or antibodies recognizing protein markers demonstrates that these 
distinct fibroblast subtypes are localized either to proximal areas 
near conducting airways, termed “bronchi,” and blood vessels, or 
to the distal alveolar regions. A number of groups have adopted the 
nomenclature “proximal” (also called “adventitial”) versus “alve-
olar” to characterize these distinct subtypes (13, 17–26) (Table 1).

Narvaez Del Pilar et al. recently built on this proximal-distal 
framework by adding another layer of specificity based on cell 
types with which mesenchymal cells are most closely associated 
(15). Proximal fibroblasts exhibit enriched gene expression of cyto-
kines and chemokines known to be important for organizing and 
activating immune cells (13). These gene expression profiles along 
with their localization in adventitial cuff regions suggest important 
roles in orchestrating immune cell trafficking and function (27). 
Distal fibroblasts share common transcriptional features with the 
lipofibroblast (13, 15) and express genes encoding BMP and FGFs, 
important for maintenance of alveolar epithelial cells (28).

Consistent with their distinct localization, proximal and alveo-
lar fibroblasts differentially express genes encoding structural ECM 
proteins, including collagens, with Col14a1 denoting proximal fibro-
blasts and Col13a1 denoting alveolar fibroblasts (21, 29, 30). Despite 
differences in nomenclature and selection of lineage markers, results 
across single-cell gene expression studies have been remarkably 
consistent in distinguishing these two spatially restricted subsets.

Despite important differences in respiratory tract anato-
my between mice and humans (31), comparative studies of lung 
fibroblasts based on single-cell gene expression demonstrate a 
surprising amount of conservation with respect to the proximal 
and adventitial framework and lineage markers — for example, 
expression of the mouse Pi16 or the human PI16 gene indicates 
adventitial fibroblasts, and expression of the mouse Npnt or 
the human NPNT gene indicates alveolar fibroblasts (5, 13, 20). 
Mesenchymal cells also undergo dramatic changes with respect 
to phenotype and function as they guide the development of the 
respiratory tract early in life (7, 15, 32–34). One salient example 
of mesenchymal cell dynamics is the transient presence of sec-
ondary crest myofibroblasts (SCMFs) during lung alveologene-
sis. SCMFs appear along septal ridges and help partition nascent 
alveoli, increasing surface area for gas exchange (31).

Changes in the lung mesenchymal compartment during 
development, and later in aging (35), add another layer of 
complexity for defining distinct lineages of cells with specific 
functions in lung development, injury, and repair. Mesenchy-
mal plasticity and dynamics of defined lineages are important 
to consider when investigating age-dependent diseases — for 
example, severe respiratory viral disease, asthma, and pulmo-
nary fibrosis — and assigning protective or pathologic functions 
to certain subtypes or activation states. Here, we will use the 

Recent comparative studies across tissues identified common 
transcriptional programs associated with the term “universal” 
fibroblast types that show shared inflammatory activation states 
across diseases (5, 6). In addition to these common fibroblast iden-
tities across tissues, there are also tissue-specific transcriptional 
programs consistent with the roles for these cells in generating 
distinct tissue structures in compartmentalized organs such as the 
lungs. Impressively, both universal and tissue-specific identities 
are conserved across mice and humans. Several different frame-
works have been developed to classify fibroblasts and compare 
their functions in lung development, injury, and repair.

Functional heterogeneity of lung fibroblasts. One established 
framework classifies fibroblasts on the basis of function during 
homeostasis, denoting fibroblasts with contractile functions as 
myofibroblasts, those with storage functions as lipofibroblasts, 
and those with synthesis functions as matrix fibroblasts (7). Myo-
fibroblasts exhibit a contractile phenotype associated with activa-
tion by a number of different stimuli, including TGF-β. Myofibro-
blasts have well-studied functions in tissue repair and can adopt 
pathologic functions during fibrosis development (8). Lipofibro-
blasts are mesenchymal cells located in close proximity to type 2 
alveolar airway epithelial cells (T2 AECs) that contain lipid vesi-
cles and express adipose-related genes (9). Lipofibroblasts play 
functional roles in supporting T2 AECs during pulmonary devel-
opment and injury via production of surfactants and retinoic acids 
(10, 11). Matrix fibroblasts inhabit the lung interstitial ECM and 
play roles in generating and modifying lung ECM. These cells can 
additionally adopt activation states depending on microenviron-
mental cues in the tissue. Consistent with the high degree of plas-
ticity among fibroblasts, there is evidence that fibroblasts can con-
vert between lipofibroblast and myofibroblast functional types, 
which impact resolution of lung injury and repair (12).

There is further heterogeneity among mesenchymal cells in 
the respiratory tract with distinct cell types occupying restricted 
anatomical niches. Tsukui et al. identified peribronchial fibroblasts, 
another fibroblast subtype, transcriptionally related to, but distinct 
from, smooth muscle cells and located in subepithelial lining of 
mouse bronchioles (13). Fibroblasts with transcriptional profiles 
similar to those of peribronchial fibroblasts, marked by high expres-
sion of Hedgehog-interacting protein (HHIP) (14), have been iden-
tified by other groups, but were classified as myofibroblasts (15, 16). 
It is unclear whether there is a human homolog of the HHIP-ex-
pressing peribronchial fibroblasts. At least one study has identified 
a distinct population of mesenchymal cells with similar peribronchi-
al, subepithelial localization in human lungs (17). This population 
shares similar transcriptional profiles to the peribronchial fibro-
blasts in mice, including expression of LGR5 and ASPN. A notable 
difference, however, is lack of HHIP expression. Considering the 
evidence that HHIP plays an important functional role in peribron-
chial fibroblasts modulating tissue inflammation associated with 
COPD (16), it is unclear whether LGR5+ fibroblasts in humans and 
HHIP+ fibroblasts in mice have homologous functions.

Spatial heterogeneity of lung fibroblasts. Another framework 
developed to classify fibroblasts is based on anatomical location in 
the respiratory tract. This framework organizes distinct fibroblast 
types according to the compartment in which they reside, in a proxi-
mal, termed “adventitial,” to distal, termed “alveolar,” orientation. 
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Fibroblasts in primary and secondary lymphoid organs. The 
relevance of crosstalk and interactions between fibroblasts and 
immune cells has clearly been defined by their function in both 
primary and secondary lymphoid organs.

In primary lymphoid organs, such as bone marrow, fibroblasts 
regulate hematopoietic stem and progenitor cell (HSPC) differen-
tiation and maturation via expression of ECM proteins, which sub-
sequently interact with integrins and CD44 on HSPC surfaces (37, 
38). In this context, fibroblasts restrain the release of immature 
cells from the primary lymphoid structure into the circulation until 
full differentiation and maturation are achieved. This process is 
typically mediated by CXCL12 and VCAM-1 (37, 39).

Secondary lymphoid organs, such as lymph nodes, which are 
supported by highly specialized fibroblastic reticular cells (FRCs), 
are equally central to the development and activation of adaptive 
immunity (40). As compared with inflammatory fibroblasts, FRCs 
exhibit a transcriptional profile that is more enriched in genes 
from immune pathways contributing to antigen presentation and 
cytokine responses (36, 41). Within the lymphatic tissue, fibro-
blasts coordinate the direct interaction between innate and adap-
tive immune cells (Figure 1).

Myofibroblasts arising from mesenchymal tissue may also 
transition into specialized FRCs in lymph nodes, distinguish-
able from other immune subsets by the expression of podoplanin 
(PDPN) and PDGFRA and the absence of CD45 and CD31 expres-
sion (36, 42, 43). FRCs also express molecules shared by different 
types of inflammatory myofibroblasts, including desmin, vimen-
tin, CD90, CD73, CD103, α-SMA, and ERTR7 (44). The stromal 
address code paradigm, known to guide leukocytes, includes 
localized fibroblasts and clearly reflects crosstalk through a net-
work of soluble factors and adhesion molecules (45). Additional 
studies have also shown that FRCs could directly serve as antigen 
presenters to T and B cells, activating adaptive immunity and reg-
ulating self-reactive lymphocytes (46, 47).

Furthermore, FRCs have also been reported to provide a sup-
pressive environment via different mechanisms, including anti-
genic tolerance and activating Tregs (48). Interestingly, single-cell 
gene expression analyses demonstrated several phenotypic dis-
tinctions among FRCs (49–51). Such structural and phenotypic 
heterogeneity among FRC subsets indicates contributions to anti-
gen presentation, immune regulation, and tolerance.

Immunoregulatory functions of fibroblasts in 
acute settings
While immunoregulatory functions of fibroblasts have been defined 
in primary and secondary lymphoid organs, much less is known in 
peripheral tissues. The presence of activated and inactivated subsets 
of fibroblasts has been linked to inflammatory responses through an 
influence on the proliferation, migration, residence, and apoptosis 
of infiltrating immune cells (52). The immunologic contribution of 
fibroblasts varies from recruitment and activation of immune cells 
to immunosuppression and clearance of inflammation, suggesting 
spatial heterogeneity and pivotal roles in orchestrating lung immune 
responses. Through production of surface molecules and leukocyte 
recruitment factors, fibroblasts signal their anatomical location to 
circulating immune cells, uniquely dictating the identity of recruited  
populations through various signaling mechanisms (45).

proximal-distal framework and refer to fibroblasts as “adven-
titial” and “alveolar” when reviewing the roles in lung inflam-
mation and respiratory disease. It is becoming evident that lung 
fibroblasts can adopt a wide variety of activation states and 
assume diverse roles in regulating immune responses to insults. 
In addition to their well-established functions in tissue repair 
and fibrotic diseases, fibroblasts activate inflammatory path-
ways traditionally assigned to professional immune cells (5, 36). 
Lung fibroblasts can acquire inflammatory and/or pathologic 
functions in diverse respiratory disorders, including acute infec-
tions, allergy-related asthma, COPD, and fibrosis.

Fibroblasts have the capacity to respond to diverse signals 
and subsequently acquire different activation states. These sig-
nals include cell-intrinsic signals generated during infection or 
cellular perturbations and cell-extrinsic signals, including cyto-
kines or growth factors. In addition to the extracellular cytokine 
environments that fibroblasts respond to, a specific fibroblast 
lineage — adventitial versus alveolar — may also determine their 
activation potential, in terms of magnitude and quality.

Table 1. Human and mouse lung fibroblast heterogeneity 
markers

Fibroblast subsets
Mouse  

markers Refs.
Human 
markers Refs.

Alveolar fibroblast

Col13a1
Ces1d
Itga8
Tcf21
Wnt2
Npnt

21–23, 29, 188

GPC3
SPINT2
FGFR4
NPNT
ITGA8

13, 20, 24–26

Adventitial fibroblast

Col14a1
Pi16
Ly6a

Mfap5
Il33

Serpinf1
Ccl11

5, 19, 21–23, 28, 
29, 34

SERPINF1
SFRP2
PI16

MFAP5

21–23, 188

Lipofibroblast

Col4a1
Fabp1
Fabp4

Lpl
Fabp5
Lipa

Pparg
Fgf10
Plin2
Tcf21

12, 189–192
APOE
FST

PLIN2
193–196

Myofibroblast
Cthrc1
Postn
Acta2

13, 28, 73

ASPN
CTHRC1
POSTN
ACTA2
WIF1

FGF18
SCX

LGR6

193–196

Pan-fibroblast
Pdgfrα
Col1a1
Col1a2

16, 197

COL1A1
COL1A2

BSG
MFAP4

DCN

26, 198, 199
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inflammasomes (53, 54). While cytokines and chemokines pro-
duced by lung-resident innate cells are crucial for initiating and 
maintaining inflammatory signaling and subsequent recruitment 
of T cells, lung fibroblasts have equally been shown to orchestrate 
the progression and resolution of inflammatory cascades in acute 
pulmonary inflammation via multiple mechanisms (55–57).

Fibroblasts in acute inflammation and immune surveillance. In 
addition to their critical role in coordinating immune functions 
within primary and secondary lymphoid organs, tissue-resident 
fibroblasts also exhibit an array of pathophysiologic functions 
in response to acute inflammation and infection. This coordina-
tion includes activation of COX-2, NF-κB–mediated kinases, and 

Figure 1. Lymphatic tissues in the lung regulate the differentiation and release of circulating leukocytes, while fibroblasts coordinate the 
convergence and communication between innate and adaptive immune cells. Lung insult caused by airway exposure to environmental triggers 
(e.g., aeroallergens, viral infection) induces a localized inflammatory response that drives the transformation of epithelial and endothelial cells to 
myofibroblasts through EMT and endothelial-mesenchymal transition (EndMT) processes. These processes also associate with the recruitment of 
circulating fibrocytes to lung ECM. Lung ECM-resident fibroblasts are simultaneously induced by a range of cytokines and growth factors, includ-
ing IL-25, IL-33, TSLP, and TGF-β, and they transition from a resting state to an activated phenotype and finally to hypersecretory myofibroblasts. 
Myofibroblasts produce a range of cytokines and chemokines as well as soluble inflammatory factors, including IL-1, IL-6, IL-8, IL-13, M-CSF, CXCLs, 
CCLs, and TGF-β. These mediators regulate the infiltration, trafficking, and polarization of various adoptive and innate immune cells, including 
eosinophils, neutrophils, macrophages, and NK cells, as well as a variety of subsets of T lymphocytes, including Th1, Th2, and Th17 cells and Tregs. 
The subsequent blended matrix facilitates crosstalk and interaction between various immune subsets in the stromal tissue, further exacerbating 
the inflammatory cascade and promoting a tissue remodeling process.
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(IPF), and exposure to SARS-CoV-2, but not influenza A virus, 
sufficiently induced a similar profibrotic phenotype in vitro, sug-
gesting a unique fibroblast-gene signature in response to respi-
ratory viral infection (74). Lung macrophages from patients with 
COVID-19 and those identified in IPF shared transcriptional 
signatures including expression of the profibrotic genes SPP1, 
CD163, and MMP3. Transcriptomic analyses predicted close 
interactions between lung fibroblasts and profibrotic macro-
phages, which were supported by immunostaining in patient lung 
tissue. The strength of these predicted fibroblast-macrophage 
interactions increased with days after symptoms began, consis-
tent with fibroblast-macrophage activation being important for 
progression of postviral lung disease. Interestingly, angiotensin- 
converting enzyme 2 (ACE2), a receptor for SARS-CoV-2, has 
also been shown to be upregulated in lung fibroblasts from mod-
els of chronic, but not acute, lung inflammation, suggesting a 
direct contribution of lung fibroblasts to infection susceptibility 
in patients with COPD and IPF (75, 76).

In studies of lung tissue samples from human COVID-19 cas-
es, activated fibroblasts were also associated with areas of pul-
monary fibrosis in distal lung (77, 78). Notably, studies in human 
COVID-19 cases were performed on lung samples collected after 
development of severe disease and upon death of the subjects 
when failed tissue repair and fibrosis would most likely be present. 
For practical and ethical reasons, these studies were unable to cap-
ture fibroblast activation states early in infection and define the 
differentiation pathways that these cells adopt from initial resting 
state to a terminal pathologic state.

Fibroblasts in acute respiratory distress syndrome. Acute respi-
ratory distress syndrome (ARDS) results from direct (as in infec-
tious pneumonia) or indirect (as in extrapulmonary trauma) 
triggers and manifests clinically as the sudden onset of severe 
hypoxemia associated with pulmonary infiltrates in the absence 
of heart failure (79). Via production of cytokines, chemokines, 
growth factors, and ECM proteins, fibroblasts are essentially 
involved in coordinating host immune responses following expo-
sure to lung insult (70, 80). Such contribution is driven by a tran-
sient transcriptional reprogramming in fibroblasts before return-
ing to a resting state. The FGF/FGF receptor signaling pathway 
has been implicated in the pathophysiology of ARDS as well as 
additional respiratory disorders, including lung cancer, pulmo-
nary hypertension, COPD, and fibrosis (81). The implication of 
growth factor signaling pathways in diverse pulmonary pathol-
ogies demonstrates their importance in regulating fibroblast 
responses to a variety of triggering signals in ARDS (82, 83). Sev-
eral recent studies, however, suggest that acute triggers, driven by 
both infectious and sterile insults, activate fibroblasts and initiate 
differentiation to a pathologic, profibrotic state.

Immunoregulatory functions of fibroblasts in 
chronic inflammation
Chronic lung inflammation is induced by persistent exposure to 
triggers followed by infiltration and retention of immune cells 
with a lack of repair signaling machinery. This process leads to an 
increased deposition of ECM proteins with excessive production 
of inflammatory mediators, including TNF-α, IL-6, and IL-8 in 
the respiratory tract (84, 85), consequently leading to structural 

Upon exposure to inflammatory triggers, fibroblasts produce 
chemokines that promote immune cell recruitment. For example, 
expression of the CCR2 ligands CCL2 and CCL7 by fibroblasts 
facilitates myeloid infiltration into lungs (58). Once immune cells 
become locally confined in the ECM, fibroblasts additionally 
upregulate several proinflammatory mediators, including type I 
interferons, IL-6, B cell–activating factor (BAFF), and a prolifer-
ation-inducing ligand (APRIL), which convey survival signals to 
neighboring immune cells, allowing for further proliferation and 
activation (59–61). Furthermore, fibroblasts secrete multiple cyto-
kines in the stromal compartment and serve as antigen-present-
ing cells activating both innate and adaptive machinery to support 
expansion, maintenance, and metabolic fitness of infiltrating 
memory T cells (50, 51, 62).

Lung stromal cells have also exhibited antigen presenting 
activity through mutual interaction with localized dendritic cells 
(63, 64), suggesting a role in long-term immune protection via 
sustaining effector resident memory T cell functionality. Notably, 
multiple additional studies have also reported that lung fibroblasts 
create a specialized niche that plays a key role in development and 
activation of lymphocytes following vaccination (65–67). Interest-
ingly, a distinct phenotype of IL-33–producing fibroblasts was also 
identified when fibroblast stromal cells were differentially target-
ed by adenovirus vector–based vaccination, indicating a thera-
peutic potential for fibroblasts in vaccination against respiratory 
infections via supporting memory T cell inflation (68).

Fibroblasts in acute lung infections. In the context of viral infec-
tion, the ability of fibroblasts to activate virus-specific CD8+ T cells 
and to limit immune exhaustion following viral infection has been 
shown to depend on type I interferon signaling. This interferon-re-
sponsive regulation of CD8+ T cells by fibroblasts was observed 
in both lymph nodes and peripheral tissues, such as lung (51, 
69, 70). In response to influenza virus infection, lung fibroblasts 
can adopt different activation states, including those associated 
with antiviral, proinflammatory, and repair functions. In cases 
of severe influenza infection, inflammatory lung fibroblasts may 
drive lethal immunopathology based on the activity of the ECM 
protease ADAMTS4, which is consistent in mouse models and 
severe human influenza infection (30). Signals associated with 
tissue damage, including IL-1 and TNF-α, can activate inflamma-
tory fibroblasts during influenza infection. However, it is unclear 
whether these responses are preferentially activated in adventitial 
or alveolar fibroblasts and how compartmentalization of these 
responses would influence disease outcome.

Microbes and microbial metabolites were also shown to be 
directly sensed by fibroblasts through TLRs, resulting in modu-
lation of inflammatory responses and subsequent activation of 
MyD88, an adaptor protein that triggers NF-κB signaling (71, 72). 
These fibroblasts were transcriptionally similar to those identified 
in mouse models of pulmonary fibrosis and described as pathologic.  
They also expressed the collagen triple helix repeat containing 1 
(CTHRC1/Cthrc1) gene (13). Lineage tracing tools and studies in 
mouse models of pulmonary fibrosis identified alveolar fibroblasts 
as the source of Cthrc1-expressing pathologic fibroblasts (73).

Moreover, lung-derived macrophages from patients with 
COVID-19 exhibited a profibrotic transcriptional phenotype 
comparable to those identified in idiopathic pulmonary fibrosis 
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alteration and remodeling as graphically demonstrated in Figure 
2. While there are common mechanisms that fibroblasts utilize to 
modulate tissue immunity across chronic diseases, several subsets 
of fibroblasts are generally considered either location or disease 
specific. Our knowledge, however, regarding the specific role of 
these subsets has been limited by their intrinsic variability and 
the lack of selective markers (86). The vulnerability of the respi-
ratory system to inflammation is usually attributed to an alteration 
in physiologic defensive mechanisms and the low regenerative 
capacity of the lungs, resulting in tissue injury, cell death, and 
respiratory dysfunction, all of which are main characteristics in 
asthma, COPD, and pulmonary fibrosis (87).

In models of pulmonary fibrosis, fibroblasts appear to transi-
tion through an inflammatory state, characterized by expression of 
immunoregulatory genes, as they differentiate into a fibrosis-pro-
moting cell type (29, 73). The signals required to guide these dif-
ferentiation processes remain unclear.

Fibroblasts in asthma. Bronchial asthma is among the most 
common chronic pulmonary disorders, affecting over 10% of the 
world’s population, and its prevalence continues to rise. The disease 
is characterized by a series of events, including increased epitheli-
al and smooth muscle thickness, goblet cell hyperplasia, increased 
mucus secretion, abnormal deposition of ECM components in the 
basement membrane (BM), and angiogenesis, all of which lead 
to tissue remodeling (88). The inflammatory response is typically 
associated with bronchial hyperresponsiveness and airflow restric-
tion (89). Fibroblast-to-myofibroblast transition is a hallmark of 
asthma, wherein myofibroblasts continue to reside within the tissue 
and actively engage in tissue remodeling by exerting contractile 
stress on ECM and surrounding cells. This response is further inten-
sified by secreted growth factors, immunomodulatory cytokines 
and chemokines that play important roles in cell adhesion and leu-
kocyte activation (88, 90). Asthma patients with detectable fibro-
blasts in bronchoalveolar lavage samples show a markedly thicker 
BM with an over 10-fold increase in CD34/CD45RO/α-SMA– and 
CD34/procollagen I–expressing cells, suggesting strong correlation 
between recruited fibrocytes and the BM thickness (91). The epithe-
lium-derived IL-1α induces a proinflammatory response that alters 
fibroblasts’ ability to repair fibrillar collagen I via LOX, LOXL1, and 
LOXL2 activity, suggesting a direct contribution of fibroblasts in 
bronchial inflammation and tissue remodeling in asthma (92).

Moreover, the Th2-secreted cytokines IL-4 and IL-13 induce 
fibrosis by promoting fibroblast invasion in lungs of asthma 
patients. Such effects can be blocked by TGF-β1 and MMP inhib-
itors, suggesting a direct role in promoting invasive fibroblast 
phenotypes in people with asthma (93). In asthmatic bronchial  
fibroblasts, the effect of IL-13 has recently been linked to the 
pathologic involvement of the histone demethylase JMJD2B/
KDM4B, which is a major contributor in the development of ste-
roid-resistant asthma (94). Importantly, drugs routinely used to 
target inflammatory pathways in asthma have shown poor effica-
cy or no efficacy in inhibiting remodeling (95, 96).

Fibroblasts in chronic obstructive pulmonary disease. COPD is a 
leading cause of death worldwide and a major health burden giv-
en the lack of efficient therapeutics (97). Loss of elastic fibers from 
bronchial and alveolar walls is a major defining feature of COPD.  
Models of non-infectious lung inflammation have provided addition-

al insight into the diverse activation states that fibroblasts can acquire 
and underlying molecular mechanisms regulating their activity. 
Multiple GWAS identified the gene encoding Hedgehog-interacting 
protein (HHIP) as a risk factor for development of COPD (98). Haplo-
insufficiency of Hhip resulted in activation of inflammatory pathways 
that potentiate IFN-γ production from CD8+ T cells with emphysema 
development and has been used to model COPD in mice with age-re-
lated lymphocytic inflammation and emphysema (99).

The fibroblasts isolated from patients with COPD exhibited 
secretory phenotypes characterized by upregulation of several 
inflammatory markers, in addition to the matrix proteoglycans 
versican and elastin (100). Consistent with models of inflamma-
tory fibroblasts in proximal regions of the lungs that drive lympho-
cytic inflammation and emphysema, a recent study also reported 
that conditional deletion of Hhip in Gli1+ fibroblasts resulted in 
expansion of tissue-resident T cells and epithelial cell loss (101).

As a primary source of ECM deposition during chronic lung 
inflammation, fibroblasts coordinate fibrosis formation by inter-
acting with various subsets of myeloid populations, thus triggering 
differentiation of mesenchymal stromal cells into myofibroblasts 
and activating the TGF-β signaling pathway (102). The dysregula-
tion of TGF-β signaling is a major driver of remodeling in patients 
with COPD, suggesting an association with disease severity (103). 
While localization is essential for enabling interaction between 
fibroblasts and adjacent immune subsets, the excessive produc-
tion of VEGF by lung-derived fibroblasts likely results in contin-
uous remodeling that is observed in the distal lung compartments 
of patients with COPD (104).

In addition to TGF-β signaling, multiple immune subset–
derived cytokines also contribute to disease progression. These 
factors include IL-17 and IL-22, both of which have been shown 
to stabilize TGF-β receptors on fibroblasts, thus enhancing TGF-β 
signaling and increasing sensitivity to TGF-β (105, 106). While 
IL-13 induces TGF-β signaling in macrophages, its role in fibrosis 
acts independently through excessive stimulation of stromal and 
parenchymal cells. The targeting of IL-13, IL-4R, and IL-13Ra1 has 
been implicated in a reduction of chronic inflammation in different 
settings of tissue injury, suggesting a critical role for the interaction 
between fibroblasts and type 2 cytokine signaling in the develop-
ment of chronic airway inflammation and lung fibrosis (107–110).

Fibroblasts in idiopathic pulmonary fibrosis. IPF is a chronic 
form of fibrotic interstitial pneumonia characterized by excessive 
collagen deposition. There is a lack of understanding of underly-
ing causes and pathways that contribute to IPF progression, yet 
cellular senescence has been linked to its pathogenesis (111). The 
senescence-associated secretory phenotype (SASP) proteins are 
produced by lung fibroblasts. Interestingly, several of these pro-
teins are predominantly produced by fibroblasts from patients 
with COPD and IPF and have been directly implicated in a multi-
tude of chronic inflammatory responses, suggesting a correlation 
between fibroblast phenotype and disease severity (112). Although 
spatial proximity is critical for allowing crosstalk between fibro-
blasts and immune subsets, some reports have shown that fibro-
blasts can efficiently produce regions in the matrix, termed “defor-
mation fields,” that generate a dynamic force within the stromal 
layer, allowing signal transmission to distant immune subsets and 
facilitating migration to the affected sites (113, 114).
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Unlike the neutrophil and M1 macrophage phenotype that 
defines the IL-1/IL-17A/TGF-β axis, the fibrotic pulmonary 
response is linked to a predominant infiltration of eosinophils 
and M2-like macrophages (115), and an abundance of Th2 cyto-
kines in IPF lungs. This immune response has been linked to 
an imbalance between anti- and profibrotic mediators in the 
lungs (116, 117). Moreover, IL-25 and IL-33 could serve as key 
initiators of type 2–dependent fibrosis by triggering IL-4 and 
IL-13 production in innate lymphoid cells, T cells, eosinophils, 
and type 2–associated leukocytes (118–120). Other reports 
have also identified various immune subsets as critical con-
tributors to the development of IPF (121–124). Interestingly,  
a phase II randomized study targeting IL-13 was not successful in 

patients with IPF (125), suggesting that Th2-mediated immunity 
might not be the sole contributor in the development of fibrotic 
responses in patients with IPF.

Taken together, these studies indicate that diverse respiratory 
exposures can activate convergent inflammatory pathways in fibro-
blasts that drive acute and chronic lung disease and identify mech-
anisms underlying exacerbations in several pulmonary disorders.

Therapeutic potential of targeting lung 
fibroblasts
Despite progress toward fundamental understanding of the 
pathogenesis of acute and chronic lung inflammation, many respi-
ratory disorders still lack targeted disease-modifying therapies  

Figure 2. Fibroblasts exposed to chronic inflammation have a role in remodeling lung tissue. (A) Persistent stromal signaling facilitates the expansion 
of activated fibroblasts and their transition to myofibroblasts. ECM proteins are produced upon fibroblast activation. Together with soluble stimuli, depos-
ited ECM proteins drive structural changes and promote multiple physical cues, including matrix stiffening that remodels lung tissue into phenotypes 
observed in ARDS, asthma, COPD, and IPF. (B) Alveolar fibrosis versus healthy alveoli.
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to increased incidence of deaths, hospitalizations, and adverse 
events in the group receiving combination therapy (142).

Over the years, additional potential targets for therapeutic 
intervention have been trialed. NAC, a precursor to glutathione, 
was studied to reverse oxidative stress, a contributor to IPF patho-
genesis. For a time, after the positive results of the 2004 IFGE-
NIA study (143), which demonstrated improvements in lung func-
tion in patients treated with NAC in combination with prednisone 
and azathioprine, NAC was frequently prescribed by pulmonolo-
gists (144). However, the NAC therapy versus placebo arm of the 
study failed to demonstrate significant effects (145). Thus, NAC 
is no longer recommended as a monotherapy (146), but its poten-
tial benefits in subgroups of patients as an adjunctive therapy 
remain uncertain, and other therapies targeting oxidative stress 
are currently in development (147). IFN-γ-1b, which has preclini-
cal data suggesting pleomorphic antifibrotic and immunoregula-
tory effects, was clinically tested with negative results (148). With 
these and other clinical trial experiences, IPF treatment focus 
shifted from antiinflammatory to antifibrotic responses.

Modulating fibroblast signaling has since become the contem-
porary mainstay of IPF treatment. In the recent past, antifibrotic 
medications, including colchicine, which also has antiinflammato-
ry properties, and D-penicillamine, have been studied as potential 
treatment options (149). Following the 2011 CAPACITY trials (150) 
and the 2014 INPULSIS (151) and ASCEND (152) trials, nintedan-
ib and pirfenidone have become the preferred treatment options 
for IPF. Each treatment targets a different fibroblast-profibrotic 
signaling pathway. Nintedanib is a small-molecule RTK inhibitor 

(80, 126–131). Multiple studies have recently demonstrated the 
potential of mesenchymal cells as a therapy in a range of dis-
orders. Among mesenchymal cells, pulmonary fibroblasts and 
myofibroblasts are key targets (132–136). Our improved defini-
tion of fibroblast heterogeneity and response to inflammatory 
stimuli has expanded our understanding of their role in immune 
regulation. Indeed, a number of therapeutic approaches specif-
ically directed at lung mesenchyme are currently being studied 
in a diverse array of respiratory disorders, including IPF, asthma, 
COPD, and ARDS. Figure 3 depicts key therapeutic mechanisms 
for mitigating fibroblast-mediated pulmonary disorders. In this 
section, we will highlight historical and contemporary therapeu-
tic approaches and conclude with a view of the future, including 
potential strategies.

Targeting fibroblasts in lung fibrosis. A number of therapeu-
tic approaches have been studied for mitigating COPD and IPF. 
Initially, and into the early 21st century, disease pathogenesis 
models focused on inflammation as the driver of dysregulated 
fibrotic responses (137, 138). Early reports suggested that subsets 
of patients achieved stabilization or even remission with corti-
costeroids (139, 140), which became the backbone of treatment 
strategies (141). Cyclophosphamide, a cytotoxic agent, or aza-
thioprine, an antimetabolite agent, were subsequently added 
as treatment options (138). However, these treatments had little 
clear evidence of impact on inflammatory or fibrotic compo-
nents of the disease (138). Eventually, the 2014 PANTHER study, 
a randomized double-blind trial of azathioprine, prednisone, and 
N-acetylcysteine (NAC) for IPF (142), had to be stopped early due 

Figure 3. Therapeutic strategies that target fibroblast-mediated immune dysregulation may mitigate pulmonary inflammation and lung remodeling. 
Key therapeutic strategies for mitigating fibroblast-mediated immune dysregulation in pulmonary disorders include (a) promoting cellular senescence, (b) 
inhibiting proliferation and invasion, (c) inhibiting growth factors and collagen production, (d) inducing apoptosis, (e) destabilizing ECM, and (f) interfering 
with the fibroblast signaling machinery. SMI, small-molecule inhibitor.
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(79). An exuberant or pathogenic fibroproliferative response, to 
which fibroblasts are key contributors, is thought to predispose 
to lung fibrosis. As such, fibroblasts, and their role in regulating 
reparative responses to ARDS, represent a relatively understud-
ied potential therapeutic target for ARDS. It is notable that, even 
after years of clinical study, no currently approved disease-modi-
fying drugs are available for ARDS, and treatment largely remains 
supportive in nature.

Corticosteroids of varying dosing regimens perhaps have the 
most published data regarding their effect as a disease-modify-
ing agent for ARDS (181). Their use may be beneficial in certain 
disease phenotypes (182) as well as in patients who otherwise 
meet an indication for corticosteroids (183). However, it is likely 
that further studies incorporating contemporary lung-protective 
ventilation strategies along with corticosteroids will be required 
to determine their role in ARDS management. There is an ongo-
ing randomized placebo-controlled trial studying pirfenidone to 
prevent post-ARDS pulmonary fibrosis as well as ongoing studies 
evaluating the roles of substrate-selective p38α inhibition (184), 
among others (highlighted in Table 2).

A final potential therapy to highlight for ARDS treatment 
within the scope of this Review is mesenchymal stem cells (MSCs) 
(185). MSCs may be obtained from one of several sources and 
notably have low immunogenicity, enabling allogeneic admin-
istration. MSCs may mediate pleiotropic beneficial effects on 
immune and structural lung cells in ARDS. Early phase I studies 
in patients with moderate to severe ARDS also demonstrate their 
safety (186); however, larger studies will be required to determine 
what role they may play in ARDS management.

Future perspectives and therapies
The previous discussion summarizes some, but not all, of the 
potential therapeutic targets and pathways being explored for 
chronic inflammatory lung diseases in which fibroblasts play a 
key role in pathogenesis. The advent of single-cell transcriptomics 
has allowed for a more detailed understanding of basic fibroblast 
biology within the lung, in homeostasis and in the context of dis-
ease states. As these findings are further studied and validated, we 
anticipate that novel therapeutic targets will emerge. These data, 
coupled with a rapidly expanding armamentarium of biologics 
and cell-based therapies incorporated in treatments for other dis-
ease entities in which aberrant fibroproliferative responses play a 
role, such as in the immunosuppressive microenvironment of sol-
id tumor malignancies (187), may enable incorporation of these 
treatment strategies to target deleterious fibroblast responses in 
inflammatory lung diseases.
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with activity against VEGFR, PDGFR, and FGF receptors, shown 
to slow lung fibrosis via reducing the production of collagen and 
profibrotic mediators (151, 153, 154). Pirfenidone is an antifibrotic 
agent that additionally mediates antiinflammatory effects via inhib-
iting TGF-β signaling and restraining fibrosis (152, 155). Despite the 
improvements offered by these agents, neither cures or reverses 
established fibrotic lung disease. Accordingly, a search for addition-
al treatment regimens continues for this devastating disease.

There are a number of therapies in various stages of testing, 
from preclinical modeling to phase III clinical trials (156). Con-
nective tissue growth factor (CTGF) inhibition via mAb blockade 
(157) and supplemental pentraxin-2 (158) have reached the phase 
III trial setting. Other candidate drugs in earlier phases of test-
ing include inhibitors of integrin αvβ6/αvβ1 (146), porcupine (159), 
ectonucleotide pyrophosphatase/phosphodiesterase 2 (ENPP2), 
lysophosphatidic acid receptor (LPAR) (160), SRC kinase (161), 
and IL-11 (162). Finally, other approaches currently under eval-
uation include small interfering RNAs targeting hsp-47 (163), an 
aerosolized nucleic acid construct that inhibits TGF-β expression 
(164), targeting of the unfolded protein response (165), and cell 
senescence pathways (166), among others (167).

Targeting fibroblasts in asthma. Lung remodeling, most notably 
subepithelial fibrosis in the context of this Review, is a recognized 
feature of asthma. Current treatment recommendations are tai-
lored toward reducing inflammation with inhaled corticosteroids 
and reversing bronchoconstriction with inhaled β-adrenergic recep-
tor agonists or phosphodiesterase inhibitors. Though effective at 
reducing inflammation and bronchoconstriction, these commonly 
prescribed therapies do not prevent fibrosis or progressive tissue 
remodeling, which highlights the need for additional therapeutic 
approaches that combat this crucial feature of asthma (168).

As more experience is gained with biologics added to the asthma 
treatment armamentarium in the recent past, these drugs have been 
increasingly noted to effect lung remodeling (169). Mepolizumab, 
which targets IL-5, has been shown to be effective for asthma treat-
ment (170) and additionally improves subepithelial ECM deposition 
(171). Omalizumab, an mAb targeting IgE receptor, may addition-
ally act to reduce lung fibrosis (172). Though it has not been shown 
to demonstrate significant improvement in lung function in clinical 
trial settings (173), fevipiprant, which antagonizes the prostaglandin 
D2 receptor, decreases myofibroblast recruitment and eosinophilia, 
thereby reducing bronchial smooth muscle mass (174).

Other therapeutic targets of current interest and within the 
scope of this Review that additionally serve a dual role of reducing 
acute exacerbation and stabilizing or reducing lung remodeling 
include an MMP12 inhibitor (175), antibody-mediated IL-33 inhi-
bition (176), and antibody-mediated thymic stromal lymphopoie-
tin (TSLP) inhibition (177). Tezepelumab, an anti-TSLP mAb, was 
recently approved for asthma treatment after positive clinical trial 
results (177, 178). Though classically considered an alarmin prod-
uct of bronchial epithelial cells, TSLP is additionally expressed by 
fibroblasts and is thought to play a role in fibrotic responses (179). 
Thus, there may be benefits of TSLP blockade that extend to ame-
lioration of lung remodeling and fibrosis (180).

Mesenchymal treatments in ARDS. ARDS is thought to prog-
ress through a series of three stages: the exudative, the fibropro-
liferative, and, in a subset of ARDS survivors, the fibrotic phase 
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Table 2. Summary of therapeutics targeting lung fibroblasts in acute and chronic pulmonary disorders

Past Present Under evaluation

IPF

Immunosuppressive agents  
(corticosteroids)
Cytotoxic agents  

(azathioprine, cyclophosphamide)
OthersA

Antifibrotic agents  
(nintedanib, pirfenidone)

Lung transplant

Cytokine and growth factor signaling (CTGF, IL-11, TGF-β)
Integrin signaling (Itgαv/β6 and Itgαv/β1)

Wnt signaling (porcupine)
Cellular senescence (senolytics, senomorphics)

Modulation of wound healing (pentraxin-2)
Autotaxin–lysophosphatidic acid signaling

SRC kinase
Heat shock protein 47 (hsp-47)

Unfolded protein response

ARDS
Surfactant

Statins
IFN-β-1a

Immunosuppressive agents 
(corticosteroidsB)
Supportive care

Cytokine, chemokine, and growth factor signaling  
(GM-CSF, CXCL1/2)

Neutrophil elastase inhibitor: sivelestat sodium
Prevention of fibrosis (pirfenidone)

Regulation of alveolar fluid: solnatide
p38/MAPK inhibition

MSCs and MSC-Evs

Asthma

Immunosuppressive agents  
(corticosteroids)

Adrenergic bronchodilators  
(i.e., albuterol)

Methylxanthine bronchodilators 
(theophylline)

Anti-IgE signaling manipulation by 
monoclonal antibodies

Cytokine signaling manipulation  
(anti–IL-4 and –IL-5)

TSLP signaling manipulation by  
monoclonal antibodies

Cytokine signaling (IL-13, IL-17, IL-33, MMP-12)
Aldehyde species inhibitors

Tyrosine kinase inhibition: masitinib
Inflammasome inhibitors
Microbiome manipulation

MMP-12
AThis included supportive therapies. See article text for past treatments. BFurther study may be needed to delineate the specific role of corticosteroids (see 
article text). MSC-Evs, MSC-derived extracellular vesicles.
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