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Syphilis is a fascinating and perplexing infection, with protean clinical manifestations and both diagnostic and 
management ambiguities. Treponema pallidum subsp. pallidum, the agent of syphilis, is challenging to study in part 
because it cannot be cultured or genetically manipulated. Here, we review recent progress in the application of mod-
ern molecular techniques to understanding the biological basis of this multistage disease and to the development 
of new tools for diagnosis, for predicting efficacy of treatment with alternative antibiotics, and for studying the 
transmission of infection through population networks.

Treponema pallidum — the causative agent
Treponema pallidum subsp. pallidum (T. pallidum) is a spirochete that, 
while able to persist for decades in the mammalian host, is extremely  
fragile ex vivo. It can be cultured only transiently in vitro in rab-
bit epithelial cells and must be propagated in rabbits to maintain 
strains for laboratory examination. Consequently, genetic manipu-
lation of this organism is not yet possible. In addition, the limited 
repertoire of immunological reagents available for rabbits adds to 
the challenges of studying immune responses to this organism.

Analysis of the T. pallidum genome reveals a notable absence 
of metabolic capability (1). T. pallidum has the genes encoding 
enzymes involved in glycolysis but lacks those related to the tricar-
boxylic acid cycle and the electron transport system. Similarly, it 
lacks most genes associated with synthesis of nucleotides, amino 
acids, and lipids. The genome encodes for multiple transport pro-
teins, indicating that it may rely heavily on scavenging required 
compounds from its human host (1).

Despite the difficulties in working with T. pallidum, much has 
been learned about the molecular basis of syphilis pathogenesis. 
For each stage of infection, we review the most closely related 
steps of pathogenesis.

The natural history of syphilis
Primary syphilis — transmission, adhesion, local host immune response.  
T. pallidum is usually transmitted sexually through microabrasions 
in mucosal membranes or skin and rapidly enters the bloodstream 
to disseminate to other tissues. T. pallidum can be identified by PCR 
in the bloodstream of patients with all stages of syphilis, and the 
quantity of treponemes in blood is highest during early syphilis (2, 3).  
Individuals with lesions of early syphilis are most likely to trans-
mit T. pallidum. While the risk of infection in exposed individuals 
is approximately 30% (range, 10%–80%) (4–6), inoculation studies 
with the Nichols strain of T. pallidum suggest that the intradermal 
ID50 is only 57 organisms (7). The natural history of T. pallidum 
infection is summarized in Figure 1.

To establish infection, T. pallidum adheres to epithelial cells and 
extracellular matrix components of the skin and mucosa. Several 
T. pallidum proteins mediate adherence, including TP0155 and 

TP0483, which bind to matrix fibronectin and to both soluble 
and matrix forms of fibronectin, respectively (8). TP0136, a pro-
tein identified by reactivity with primary human syphilitic sera (9), 
also binds to human fibronectin (10). TP0751 can bind to laminin, 
which has the highest concentration in the basement membrane 
(11–13), and to fibrinogen, a blood-clotting protein that func-
tions to contain bacteria (13). TP0751 can also degrade laminin 
and fibrinogen using its zinc-dependent protease domain, which 
may be a means by which T. pallidum disseminates to surrounding 
tissues and the bloodstream (13).

T. pallidum replicates at the site of initial inoculation, dividing 
once every 30–33 hours (14, 15), inducing a local inflammatory 
response that results in a painless chancre approximately 3–6 
weeks after initial infection. In each chancre, proliferating spi-
rochetes are surrounded by immune cells, including CD4+ and 
CD8+ T cells, plasma cells, and macrophages, which produce IL-2 
and IFN-γ cytokines, indicating a Th1-skewed response (16–21). 
Tissue necrosis and ulceration occur due to small vessel vasculitis, 
and trafficking immune cells cause a non-tender regional lymph-
adenopathy. Within 3–8 weeks, the chancre heals, indicating 
clearance of T. pallidum locally. However, by this time, T. pallidum 
has spread systemically to multiple tissues and organs, setting the 
stage for secondary syphilis.

Secondary syphilis — motility, systemic host immune response, diagno-
sis, systemic spread. T. pallidum propels itself using a corkscrew-like 
mechanism by rotating around its longitudinal axis, using endo-
flagella contained within the periplasmic space between the cyto-
plasmic membrane and the outer membrane (22–24). T. pallidum 
traverses the tight junctions between endothelial cells (25, 26) to 
enter the perivascular spaces, where large numbers of treponemes 
and immune cells accumulate. Based on electron microscopy 
images of secondary syphilis skin lesions, T. pallidum may also use 
transcytosis to spread through the endothelium (27). T. pallidum 
can induce the production of MMP-1 (28), which degrades colla-
gen and may facilitate access to and egress from the bloodstream, 
resulting in systemic spread.

Usually within 3 months of infection, symptoms of secondary 
syphilis appear. The most common clinical manifestation is a 
disseminated maculopapular rash. Additional symptoms may 
include malaise, weight loss, muscle aches, generalized lymph-
adenopathy, patchy alopecia, meningitis, ocular inflammation, 
mucous patches (localized inflammation of mucosal tissues in 
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the oral cavity and genitals), hepatitis, and gastric dysmotility 
(29, 30), reflecting T. pallidum invasion and the resulting immune 
cell infiltration of these tissues.

Although T. pallidum has structural similarities to classical Gram-
negative bacteria, such as having outer and inner membranes 
and a periplasmic space, it lacks lipopolysaccharide, a potent 
proinflammatory glycolipid, and does not produce any known 
toxic proteins. Therefore, most of the symptoms and tissue damage 
related to syphilis are due to activation of the host inflammatory 
and immune responses. Exposure to whole T. pallidum and its lipo-
protein TpN47 can induce expression of the adhesion molecules 
ICAM-1, VCAM-1, and E-selectin (25, 31), which are important 
in adhesion of immune cells to vascular endothelium for migra-
tion into sites of infected tissue. Patients with secondary syphilis 
have a local immune response in the skin, consisting of monocytes, 
macrophages, CD4+ and CD8+ T cells, and DCs (32–34). This 
proinflammatory response is due to the lipid moiety contained on 
the many lipoproteins of T. pallidum (35, 36). Early syphilis lesions 
transiently contain scant polymorphonuclear leukocytes (PMNs) 
(37), and injection of recombinant T. pallidum lipoproteins TpN17 
(TP0435) and TpN47 (TP0574) into the dermis can induce tran-
sient infiltration of PMNs (35, 38), as well as a local enrichment of 
monocytes, macrophages, memory T cells, and DCs (38, 39).

The interaction of TpN47 with TLR2 on the surface of 
macrophages induces the production of IL-12 (40). When DCs 
are exposed to T. pallidum or purified TpN47, they release inflam-

matory cytokines, such as IL-1β, IL-6, IL-12, and TNF-α (41), and 
express maturation markers, including CD54, CD83, and MHC 
class II (38, 39, 41–43). T. pallidum lipoproteins also stimulate 
macrophages and DCs by binding CD14, which transmits activa-
tion signals through the TLR1/TLR2 heterodimer (40, 44, 45). The 
miniferritin TpF1 stimulates human monocytes to release IL-10 
and TGF-β, which are key cytokines that promote Treg differentia-
tion and may also allow long-term persistence of T. pallidum in the 
human host (46). CD8+ T cells present in the skin colocalize with 
staining for IFN-γ, perforin, and granzyme B (32), as well as IL-17 
(34). Studies of lesional skin samples from patients with secondary 
syphilis show that plasma cells appear later (34).

The humoral immune response produces antibodies that func-
tion in opsonization (47) and complement-mediated immobiliza-
tion or neutralization (48, 49). Macrophages clear T. pallidum from 
sites of infection through phagocytosis of opsonized organism (47, 
50) using both IgG and IgM antibodies (51, 52). A study using an 
array of 882 polypeptides predicted to be in the T. pallidum proteome 
identified 106 proteins that could induce a detectable antibody 
response (53). Two T. pallidum lipoproteins that induce high titers of 
antibodies are TpN17 and TpN47 (54–57), both of which are used in 
new enzyme and chemiluminescence immunoassay (EIA/CIA) sero-
logical tests for syphilis. Genome analysis of T. pallidum predicts that 
there are as many as 22 putative lipoproteins in the organism (1).

Measurement of antibodies is important for screening and 
diagnosis of syphilis. Two categories of antibodies — termed 

Figure 1
The natural history of untreated syphilis in immunocompetent individuals. Percentages of individuals developing to specific stages as well as 
time intervals are based on information in references 137, 146, and 147 (based on data from refs. 146–148).
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“non-treponemal,” which are directed against phospholipids, 
and “treponemal,” which are directed against T. pallidum poly-
peptides — have been used for this purpose. The non-treponemal 
antibodies are detected by the rapid plasma reagin (RPR) test, the 
Venereal Disease Research Laboratory (VDRL) test, and the tolu-
idine red unheated serum test (TRUST). Treponemal antibodies 
are detected by immunofluorescence in the fluorescent trepo-
nemal antibody-absorbed (FTA-ABS) test or by agglutination in 
the T. pallidum hemagglutination (TPHA) or T. pallidum particle 
agglutination (TP-PA) test.

Traditionally, T. pallidum infection has been diagnosed using a 
non-treponemal screening test, with reactive results confirmed 
using treponemal serologic tests. Rapid point-of-care tests (58), 
EIAs (59), and CIAs (60, 61) have been developed that detect anti-
treponemal IgM and IgG antibodies, usually to recombinant T. pal-
lidum proteins. The EIA/CIA tests can be automated, which has led 
some large laboratories in the United States to use revised syphilis 
screening algorithms beginning with a treponemal test. Positive 
tests are subsequently confirmed with a non-treponemal test, and 
discordant sera must be retested with a traditional treponemal test. 
One disadvantage of these newer tests is that they cannot distin-
guish between recent and remote syphilis, or between treated and 
untreated infection. In addition, because the new EIA/CIA tests 
are more sensitive than the fluorescence or agglutination tests, 
many sera that are reactive in the EIA/CIA tests are nonreactive 
in the confirmatory non-treponemal tests, particularly in low-risk 
populations such as pregnant women (62). These results have led 
to concerns about the specificity of the antigens used in these tests 
for syphilis infection. Indeed, a published study (63) reports that 
persons with periodontal disease carry oral treponemes that can 
be detected with monoclonal antibodies to the same TpN47 anti-
gen used in many EIA/CIA tests. Persons with periodontal disease 
have detectable antibodies to this and other T. pallidum antigens. 
Additional related concerns regarding screening with automated 
treponemal tests include increased health care and public health 
costs caused by follow-up of unconfirmed EIA/CIA screening.

In the rabbit model, despite the presence of functional antibod-
ies, passive immunization with immune serum fails to provide 
protective immunity against T. pallidum infection (64), demon-
strating that cellular immunity is also required for protection. 
The link between humoral and cellular immunity in humans is 
indicated in studies of human PBMCs exposed in vitro to T. pal-
lidum: internalization of treponemes by macrophages is facilitated 
by human syphilitic serum, leading to secretion of TNF-α, IL-6, 
and IL-1β by macrophages and resulting in IFN-γ production 
by NK cells, NK T cells, and T cells (65). After most T. pallidum 
have been cleared in the rabbit infection model, a few organisms 
remain and are able to resist macrophage ingestion even in the 
presence of immune serum (66), suggesting this subpopulation 
may be able to avoid opsonic antibody, persisting to cause latent 
or later stages of infection.

Early CNS invasion and neurological involvement. While CNS involve-
ment of syphilis infection is classically considered as the tertiary 
stage of infection, invasion of the nervous system by T. pallidum 
and neurosyphilis occur within days or weeks of infection. Neu-
rosyphilis is diagnosed by clinical manifestations (see below) as 
well as by cerebrospinal fluid (CSF) abnormalities such as elevated 
white blood cell (wbc) count, elevated CSF protein, or reactive 
CSF-VDRL test. Many affected patients may be asymptomatic in 
spite of the presence of abnormal CSF.

While most patients with CNS infection appear to control or 
clear CNS infection by T. pallidum, the factors underlying the subse-
quent development of symptomatic neurosyphilis in some patients 
are not known. Symptomatic and asymptomatic neurosyphilis are 
more common when the serum RPR titer is 1:32 or greater regard-
less of HIV status, or in HIV-infected individuals when the periph-
eral blood CD4+ T cell count is 350 or fewer cells/μl (67–70).

Symptoms of early neurosyphilis may occur during or fol-
lowing the primary or secondary stages of syphilis, especially in 
HIV-infected individuals (71) and include meningitis (headache, 
fever, and stiff neck), visual changes (blurred vision, loss of vision, 
photophobia, and other signs of ocular inflammation), hearing 
changes or loss, and facial weakness. Some studies indicate that 
HIV-infected individuals may have more significant symptoms of 
neurosyphilis (72), and HIV-infected individuals who have symp-
tomatic neurosyphilis have more severe CSF abnormalities (70, 
73). Treatment of HIV-infected patients with antiretroviral therapy 
(ART) decreases the chance of developing neurosyphilis by 65% 
(70), suggesting that immune reconstitution with ART may result 
in an improved local immune response against T. pallidum and bet-
ter control of the infection.

Diagnosis of asymptomatic neurosyphilis is complicated by the 
fact that none of the CSF measures currently used is very sensitive 
(CSF-VDRL) or specific (CSF wbc, CSF protein). In addition, con-
current HIV infection itself may cause an elevated CSF wbc count 
or protein concentration. A recently described adjunct diagnostic 
marker for neurosyphilis is the B cell chemokine CXCL13 (74).

Latent and tertiary syphilis — antigenic variation and persistence. Despite 
a host immune response that results in effective local clearance of 
T. pallidum from primary and secondary lesions, treponemes persist 
in many tissues without causing clinical signs or symptoms. This is 
termed the latent stage. While T. pallidum may seed the bloodstream 
intermittently during the latent stage and thus infect a developing 
fetus during pregnancy, sexual transmission is rare.

How can T. pallidum “escape” immune detection to cause persis-
tent and later stages of infection? Recent evidence suggests that 
T. pallidum organisms may be able to evade the acquired immune 
response by antigenic variation of bacterial surface proteins, consis-
tent with the resistance to phagocytosis of those select treponemes 
that survive bacterial clearance of the primary lesion (51). Antigenic 
variation is well described in related spirochetes that cause relaps-
ing fever (Borrelia hermsii) and Lyme disease (Borrelia burgdorferi), 
each of which also has a multistage clinical course (75, 76).

Although T. pallidum has few integral outer membrane pro-
teins (23, 24, 77, 78), bioinformatic approaches have identified 
several candidates, including members of the family of 12 T. pal-
lidum repeat (Tpr) proteins (79, 80). Among Tpr family members, 
TprK is the best studied. A strong antibody and T cell immune 
response is elicited against TprK (81, 82), and immunization with 
recombinant TprK provides partial immunity against infectious 
challenge (80, 83). Antibodies raised against recombinant TprK 
can opsonize T. pallidum for phagocytosis by macrophages in vitro 
(80). TprK sequences differ substantially between and within 
individual strains (84–86), and this diversity is localized to seven 
discrete variable regions of the protein, which are predicted to be 
surface exposed. TprK sequence diversity accumulates following 
development of acquired immunity in the rabbit model (86, 87). 
Molecular studies of TprK show that new variants arise by segmen-
tal gene conversion, with the new sequences coming from a large 
repertoire of “donor sites” located elsewhere on the chromosome 
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(ref. 88 and Figure 2). The resulting changes in exposed variable 
regions of TprK enable the organism to evade antibody binding 
and opsonophagocytosis (89). These TprK variant treponemes 
survive clearance and persist during chronic latent infection.

In some individuals, chronic latent infection can reactivate to 
cause tertiary syphilis, which occurs years to decades after initial 
infection and can affect multiple organs. In a retrospective study 
of patients from Oslo in the pre-antibiotic era, approximately one-
third of patients with untreated latent syphilis developed tertiary 
syphilis (90). Manifestations may include gumma, cardiovascular 
syphilis, and tertiary neurosyphilis. In the modern antibiotic era, 
tertiary syphilis is rarely seen, perhaps due to inadvertent syphilis 
treatment with antibiotics prescribed for other infections.

HIV and syphilis
Since the beginning of HIV/AIDS epidemic, there has been a high 
rate of HIV-1 (HIV) coinfection among syphilis patients. In 2002, 
the CDC reported that 25% of primary and secondary syphilis cases 
occurred in persons coinfected with HIV, and the incidence rate of 
syphilis in HIV-infected persons was 77 times greater than in the 
general population (91). The number of cases of early syphilis has 
continued to rise over the past decade in all geographic regions, 
particularly in men who have sex with men (MSM), and over the 
past 5 years in both African American men and women (92). While 
the increasing incidence of syphilis may be due to high risk behav-
iors (93–95), higher rates of syphilis and HIV coinfection may also 
be due to immunological and bacteriological factors.

The primary chancre can facilitate acquisition and transmission 
of HIV by disrupting mucosal and epithelial barriers (96). In addi-
tion, the influx of immune cells to syphilis lesions increases the 
number of cellular targets available for HIV infection and the prox-
imity of HIV-infected cells to transmit virus to the partner. T. pal-
lidum itself and T. pallidum lipoproteins increase the expression of 
CCR5, the chemokine receptor expressed on macrophages and DCs 
that acts as a coreceptor for HIV entry into CD4+ cells (33, 97).

It is not clear whether HIV coinfection worsens clinical manifesta-
tions of early syphilis or neurosyphilis. However, clinical and CSF 

abnormalities consistent with neurosyphilis are more common in 
HIV-infected individuals with CD4+ T cell counts less than or equal 
to 350 cells/ml (67, 69, 98). HIV-infected individuals with neuro-
syphilis have higher CSF HIV RNA concentrations, suggesting there 
may be an interaction between syphilis and HIV in the CNS (99).

While the long-term consequences of syphilis infection on the 
HIV-infected individual’s prognosis are not known, one pro-
spective study suggests that despite transient increases in CD4+  
T cell counts and viral loads, syphilis did not appear to affect HIV 
progression (100). T. pallidum coinfection may have a deleterious 
impact on the immunologic and virologic status in HIV-infected 
persons, which may improve with syphilis treatment, although 
these data are conflicting (101–104).

Treatment
For more than 50 years, parenteral penicillin has been used success-
fully to treat individuals with syphilis, with clinical resolution and 
prevention of sexual transmission. Thus, it remains the treatment 
of choice for syphilis, and no penicillin-resistant strains have yet 
been documented. Benzathine penicillin G (BPG), a depot form, 
is used for standard treatment of syphilis, and aqueous penicillin 
is used for persons with recognized neurosyphilis. Unlike aque-
ous penicillin, BPG does not cross the blood-brain barrier to reach  
T. pallidum that may have invaded the CNS. This is of particular 
concern for HIV-infected persons with syphilis.

Patients with HIV have increased rates of serological failure of 
syphilis treatment (105–107), and viable T. pallidum have been 
isolated from the CSF of HIV-infected patients following stan-
dard treatment for syphilis (105, 106, 108). In addition, HIV-
infected individuals with neurosyphilis are less likely to achieve 
normal CSF laboratory values (70, 109) and may take longer to 
resolve CSF abnormalities following treatment, compared with 
HIV-uninfected individuals (70, 109, 110). Effective ART has 
been associated with a reduction in the rate of serologic failure 
for syphilis (70).

Despite these concerns, the CDC currently recommends that 
HIV-infected individuals undergo the same BPG treatment for 
syphilis as HIV-uninfected individuals, and that evidence of neu-
rosyphilis (i.e., CSF examination) not be sought in patients with-
out neurological signs or symptoms regardless of HIV status (92). 
The long-term repercussions of these recommendations for CSF 
examination are unclear at this time.

Alternative oral antibiotic treatments. Macrolides, such as erythro-
mycin and azithromycin, and tetracycline antibiotics, such as tet-
racycline and doxycycline, are alternatives to parenteral penicillin 
in non-pregnant penicillin-allergic patients. Tetracycline, doxycy-
cline, and erythromycin require multiple doses daily for 2–4 weeks, 
reducing likelihood of patient compliance. In contrast, azithromy-
cin provides a single-dose oral alternative to parenteral BPG for 
early syphilis. Early syphilis has been successfully treated with a 
single 1- to 2-g dose of oral azithromycin (111–116) with efficacy 
equal to that of BPG.

Unfortunately, with increased use of azithromycin for many 
infections, there has been an alarming rise in the prevalence of 
macrolide-resistant T. pallidum. The first macrolide-resistant strain 
of T. pallidum (Street strain 14) was isolated in 1977 (117, 118), 
and no other such resistant strains were reported until 2004. Street 
strain 14 is highly resistant to both erythromycin and azithromy-
cin (117, 119) by virtue of an adenine-to-guanine (A→G) muta-
tion at the position cognate to A2058 in the E. coli 23S rRNA gene 

Figure 2
Gene conversion as the mechanism of antigenic variation of TprK in 
T. pallidum. Variant DNA segments located adjacent to the tprD gene 
non-reciprocally recombine with the variable regions (V1-V7) of the tprK 
gene in the expression site to generate new TprK mosaic proteins.
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(120). Clinical failures following azithromycin treatment in San 
Francisco triggered examination of T. pallidum strains from several 
geographical regions, revealing the presence of the A2058G muta-
tion in 11%–88% of T. pallidum samples (121, 122). In San Francisco 
and Seattle, the prevalence of this mutation has increased steadily 
over time (121–123). In 2009, a new mutation, A2059G, was identi-
fied in the 23S rRNA gene in T. pallidum recovered from a patient 
from the Czech Republic who failed treatment with spiramycin, a 
macrolide antibiotic (124); this mutation also confers resistance to 
erythromycin, azithromycin, and spiramycin. Zhou and colleagues 
reported treatment failure in 132 patients who received azithromy-
cin for syphilis in Shanghai from 2001 to 2008 (125), but the pro-
portion of patients infected with T. pallidum harboring the A2058G 
or A2059G mutations was not reported. Three published trials of 
successful azithromycin treatment of syphilis in Africa have led 
some to conclude that macrolide-resistant strains are not pres-
ent in Africa. Of note, patients were enrolled in these studies in  
1994–1997, 2000–2003, and 2000–2007 (114–116), either before 
or very early after recognition of macrolide-resistant strains else-
where in the world. Although there are no recent data from Afri-
ca on macrolide resistance, the absence of it does not imply the 
absence of resistant strains.

Although a global surveillance program for macrolide resistance 
mutations has not been developed for T. pallidum, the scattered 
reports from many continents suggest that these resistant strains 
are widespread, and strong caution is advised in contemplating the 
use of azithromycin for treating syphilis.

Molecular strain typing of T. pallidum
The ability to uncover important information about networks of 
transmission of syphilis infection and, particularly, to understand 
the development and spread of antibiotic-resistant strains requires 
a method for differentiating one strain of T. pallidum from another. 
Pillay and colleagues developed a T. pallidum typing method based 
on (a) determination of the number of 60-bp repeats in the acidic 
repeat protein (arp) gene and (b) sequence differences in the Tpr 
subfamily II genes (tprE [tp0313], tprG [tp0317], and tprJ [tp0621]) 
determined by restriction fragment length polymorphism (RFLP) 
analysis (126). T. pallidum subtypes with a range of 2 to 21 ARP 
repeats and 7 different RFLP patterns, designated a–g, have been 
described (126). This method for subtype designation has been 
applied to patient samples taken from chancres, condyloma lata, 
mouth scrapings, ear lobe scrapings, blood, CSF, and labora-
tory-passaged T. pallidum isolates from diverse geographic areas 
(126–134). Epidemiological studies of strain types in San Fran-
cisco and Seattle in the last decade showed that most are subtype 
14d (123, 135), which may suggest a linked sexual network, while 
other studies indicate variation in the distribution of predominant 
strain types by location in the United States and worldwide (refs. 
127–131, 133, 134, and Figure 3). Addition of a third gene to the 
typing scheme increased discriminatory power (123, 135). Sub-
typing using the tp0548 gene demonstrated that the predominant 
14d/f strain was replaced by the 14d/g strain in Seattle during the 
period from 1999 to 2008 (135). This recognition would not have 
been possible with the two-target typing method.

Figure 3
T. pallidum strain types identified throughout the world. The strain type information, years of collection, and the frequency of each strain type 
from each location are based on information in references 126, 127, 129–131, 133–135, 149, and 150.
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Molecular analysis can also be used to determine whether macro-
lide-resistant T. pallidum represents a single strain or whether resis-
tance has spontaneously arisen in multiple strains. The A2058G 
mutation was found in molecularly separate strains in Seattle, sug-
gesting that resistance mutations are arising spontaneously, rather 
than representing a single strain spreading throughout a population. 
Resistant strains were more likely to be found in patients who had 
received macrolide antibiotics in the previous 12 months (123, 136).

Strain typing may also be used to identify strains that are associ-
ated with particular clinical outcomes. Clinical descriptions from 
the pre-antibiotic era (137) and studies in the rabbit infection 
model suggest that some strains are more prone to neuroinvasion 
(138). A recent study of T. pallidum showed that patients infected 
with strain type 14d/f had a higher rate of neurosyphilis compared 
with patients infected with other strain types (135).

Vaccine development and prevention
Although highly effective treatment is available for syphilis, cur-
rently, there is an epidemic of syphilis in China and increasing 
incidence in the United States and Europe. The best hope for 
control of syphilis is development of a vaccine that prevents both 
disease and transmission. Attempts have been made over many 
decades to produce a successful syphilis vaccine by immunizing 
rabbits with whole killed or attenuated T. pallidum (reviewed in 
refs. 139 and 140). Only one immunization study, using multiple 
intravenous doses of gamma-irradiated T. pallidum, demonstrated 
complete protection against infectious challenges in the rabbit 
model (141). This protocol was very cumbersome and expensive, 
and impractical to test in humans. Immunization with recombi-
nant T. pallidum antigens can stimulate production of an immune 
response in the rabbit model, resulting in only partial protection, 
with significantly attenuated lesion development but no sterile 
immunity (80, 83, 142–145). The discovery of antigenic variation 
in TprK makes the development of a protective vaccine even more 
formidable. However, studies are underway to test the ability of 

a cocktail of conserved regions of T. pallidum antigens to confer 
protection in the rabbit model.

Conclusion
Syphilis is one of the oldest recognized sexually transmitted infec-
tions, and despite the availability of inexpensive and effective 
therapy, the incidence is increasing in many parts of the world. 
T. pallidum is a challenging infectious agent to study because of 
its inability to be cultured or genetically manipulated, its physical 
fragility, and its outbred animal model. Despite these challenges, 
development of highly discriminating molecular methods for 
strain differentiation will provide insights into the transmission of 
this infection through populations, perhaps suggesting new ways 
to target intervention activities. In addition, our knowledge of the 
molecular pathogenesis of syphilis has expanded vastly during 
the past decade, especially with respect to understanding the host 
immune response to T. pallidum. Work on this fascinating organ-
ism continues to focus on understanding its ability to evade host 
immune responses, which may ultimately lead to the development 
of a successful vaccine.
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