Supplementary Materials

Figure S1. Multiple regulators in Bbaa2. The ankle swelling measurements of Borrelia burgdorferi infected B6.C3H-Bbaa2 sub-interval congenic strains (as in Figure 1A) are most consistent with the presence of multiple positive regulators and one negative regulator within Bbaa2. A selected subset of congenic lines has been included in this figure to emphasize the contribution of each regulatory sub-interval. As noted, the ankle swelling conferred by Bbaa2a and Bbaa2b co-segregated with increased histopathology and neutrophil infiltration (Figure 1A). The lack of co-segregation by the green 125.3 to 128.2 sub-interval may reflect a difference in sensitivity between the continuous, quantitative variable of ankle swelling and the categorical nature of histology scores, or may reflect a true biological distinction between the disease processes that produce swelling and histopathology for this regulatory interval. The purple interval from 120.3 to 125.3 is proposed to contain a negative regulatory element that impacts both ankle swelling and histopathology (Figure 1A). Notably, previous analysis by Confidence Interval Mapping predicted the presence of multiple regulators within Bbaa2 (17). Significance assessed by One-Way ANOVA followed by Dunnet's Multiple Comparison Test versus B6 (as in Figure 1A). (${ }^{*} \mathrm{p}<0.05,{ }^{* *} \mathrm{p}<0.01,{ }^{* * * *} \mathrm{p}<0.0001$)

Figure S2. Composition of the B6.C3H-Gusb ${ }^{h}$ congenic interval. The 129.0-130.5 interval contains 24 genes (RefSeq Genes, Mouse July 2007 [NCBI37/mm9] Assembly, http://genome.ucsc.edu/). The interval is highly conserved between the B6 and C3H strains with only one high confidence coding polymorphism, located in the Gusb gene.

Figure S3. Gusb transcripts are stably expressed. (A) No significant differences in Gusb transcript levels were observed between strain-specific bone marrow derived macrophages (mean \pm SEM, $\mathrm{n}=6$). (B) Gusb transcript levels did not change significantly within joints following B. burgdorferi infection (mean \pm SEM, $\mathrm{n}=5$ to 6 for each group). Significance assessed by One-Way ANOVA followed by Dunnet's Multiple Comparison Test versus B6 (uninfected).

Figure S4. CBA sub-strains inherited different Gusb alleles. ARMS-PCR genotyping for the Chr5:130476763 G \rightarrow A single nucleotide polymorphism in Gusb indicates that CBA/J inherited the $G u s b^{h}$ allele, while CBA/Ca inherited $G u s b^{b}$.

Figure S5. Correction of GUSB activity in C3H Gusb ${ }^{T g}$ offspring. (A) Scatter plot of the ratio between serum activities of GUSB and beta-galactosidase (internal control), showing that all 22 included C 3 H Gusb ${ }^{T g}$ offspring from four different founders had elevated serum activity levels. (B) Scatter plot of arthritis severity (as in Figure 4C). (C) There is no apparent correlation between very high-level transgenic overexpression of Gusb b^{b} and more or less severe Lyme arthritis, suggesting that expression above a threshold level is sufficient to confer resistance. This is consistent with the resistance conferred by intermediate GUSB levels in B6.C3HBbaa2, B6.C3H-Gusb ${ }^{h}$, and Gusb ${ }^{\text {Null }}$ heterozygotes (Figure 2).

Figure S6. Radiation chimera composition. Measurement of CD45.2 positivity (right histograms) of circulating blood leukocytes at 3 weeks post-transplant indicates high-level ($\geq 90 \%$) engraftment was achieved for B cells (B220 positive, CD3e negative) and Myeloid lineages (CD3e, B220 double negative), with 60-80\% engraftment of T cells (CD3e positive, B220 negative). A rapid reconstitution protocol was employed to allow infection of mice within the time frame associated with arthritis development (6-8 weeks of age). (A) High CD45.2 positivity measured for $\mathrm{B} 6 . \mathrm{C} 3 \mathrm{H}-$ Bbaa2 (CD45.2) splenocyte donor transplanted into a B6 CD45.1 recipient. (B) Low CD45.2 positivity detected for a B6 CD45.1 splenocyte donor transplanted into a $\mathrm{B} 6 . \mathrm{C} 3 \mathrm{H}-$ Bbaa 2 recipient.

