Loss of DDRGK1 Causes Shohat Type SEMD by increasing SOX9 Ubiquitination

Adetutu T. Egunsola¹, Yangjin Bae^{1*}, Ming-Ming Jiang¹, David S. Liu¹, Yuqing Chen-Evenson¹, Terry Bertin¹, Shan Chen¹, James T. Lu^{2,3}, Lisette Nevarez⁴, Nurit Magal⁵, Annick Raas-Rothschild⁶, Eric C. Swindell⁷, Daniel H.Cohn^{4,8,9}, Richard A. Gibbs^{1,2}, Philippe M. Campeau¹⁰, Mordechai Shohat ¹¹, Brendan H. Lee^{1*}

¹Department of Molecular and Human Genetics at Baylor College of Medicine, Houston, TX, ²Human Genome Sequencing Center at Baylor College of Medicine, Houston, ³Department of Structural and Computational Biology & Molecular Biophysics at Baylor College of Medicine, Houston, TX, ⁴Department of Molecular Cell and Developmental Biology at University of California, Los Angeles, Los Angeles, CA, ⁵Recanati Institute of Medical Genetic at Rabin Medical center, Petach Tikva, Israel, ⁶ Institute for Rare Diseases at Sheba-Tel Hashomer Medical Center, Ramat Gan, Israel, ⁷The University of Texas Graduate School of Biomedical Sciences, Houston, TX, ⁸Department of Orthopaedic Surgery at University of California, Los Angeles, Los Angeles, CA, ⁹International Skeletal Dysplasia Registry at University of California, Los Angeles, Los Angeles, CA, ¹⁰Department of Pediatrics at University of Montreal, Montreal, QC, Canada ¹¹Maccabi Genetic institute and Bioinformatics unit - Sheba Cancer Research Center, Sackler School of medicine at Tel Aviv University, Tel Aviv, Israel. *Correspondence should be addressed to B.H.L. (blee@bcm.edu) or Y.B. (bae@bcm.edu)

SUPPLEMENTARY INFORMATION

Tables S1 and S2 Figures S1-S3

Time	Ddrgk1+/+	Ddrgk1+/-	Ddrgk1 ^{-/-}	Total
3 weeks	17 (34%)	33 (66%)	0	50
E14.5	6 (42.9%)	8 (57.1%)	0 (0%)	14
E13.5	3 (50%)	3 (50%)	0 (0%)	6
E12.5	21 (32.3%)	37 (56.9%)	7 (10.8%)	65
E11.5	11 (25%)	20 (45.5%)	13 (29.5%)	44

Table S1. $Ddrgk1^{-/-}$ mice are embryonic lethal between E11.5 and E12.5.

Table S2. Primer list.

Primer	Sequence
sox9a_pCS2 F	TCTTTTTGCAGGATCCCGTCCATCTACGGTGTTCG
sox9a_pCS2 R	TCACTATAGTTCTAGATCAGTGCACATTCAGACGT
ddrgk1_pCS2 F	TCTTTTTGCAGGATCCCCAAACTGTACCTGCAGCAGG
ddrgk1_pCS2 R	TCACTATAGTTCTAGATGTAGGTCATGCGCTGCT
Ddrgk1 sgRNA F	CACCGCCAGCGCGCCTGCGGG ATC
Ddrgk1 sgRNA R	AAACGATCCCGCAGGCGCGCTGGC
T7_Ddrgk1 sgRNA F	TTAATACGACTCACTATAGGGCCAGCGCGCCTGCGGG
T7 Ddrgk1 sgRNA R	AAAAGCACCGACTCGGTGCC

SUPPLEMENTAL FIGURE LEGENDS

Figure S1. Shohat type SEMD patient LCLs express a mixture of two aberrant *DDRGK1* **RNA species that both result in a premature stop codon.** (A, B) Chromatograms of *DDRGK1* cDNA and schematic of wildtype and mutant RNA species from (A) control and (B) patient LCLs. Patient LCLs show aberrant splicing at intron 3 and a mixture of two mutant RNA species because of the c.408+1G>A mutation. The first mutant RNA species found in patient LCLs is a readthrough of intron 3, while the second mutant RNA species is the result of activation and use of a cryptic splice donor site. Both RNA species have a premature stop codon.

Figure S2. Generation of *Ddrgk1*^{-/-} **mice by CRISPR/Cas9 gene editing.** (A) Schematic of the *Ddrgk1*^{2BL} allele showing the 310 bp c.-249_61del mutation deleting a portion of the 5'UTR and the first exon of the *Ddrgk1* gene. (B) Chromatogram of an E11.5 *Ddrgk1*^{2BL/2BL} (Ddrgk1^{-/-}) mouse showing the deleted region. (C) RT-PCR of total RNA from E11.5 WT (n = 3) and *Ddrgk1*^{-/-} (n = 3) limb buds. Values represented as means ± S.E.M (**P < 0.01; two-tailed t-test). (D) Immunoblots of total cell lysates from E11.5 WT (n = 3) and *Ddrgk1*^{-/-} (n = 3) limb buds. The immunoblot probing for α-tubulin is also shown in figure 4E. (E) Whole mount preparations of E11.5 WT and *Ddrgk1*^{-/-} embryos.

Figure S3. DDRGK1 does not affect the translation of SOX9. Even when translation is inhibited, overexpression of *Ddrgk1* increases levels of SOX9. 293T cells were transiently transfected with plasmids expressing His-tagged *Ub*, FLAG-tagged *Sox9* and Myc-tagged *Ddrgk1* and 24 hr later the cells were treated with 10 µg/mL of the protein synthesis inhibitor cycloheximide for 6 hr. The immunoblot is representative of two independent experiments with technical replicates.

Figure S1

Ddrgk1^{2BL} allele

Figure S3