[PDF][PDF] Quiescent endothelial cells upregulate fatty acid β-oxidation for vasculoprotection via redox homeostasis

J Kalucka, L Bierhansl, NV Conchinha, R Missiaen… - Cell metabolism, 2018 - cell.com
J Kalucka, L Bierhansl, NV Conchinha, R Missiaen, I Elia, U Brüning, S Scheinok, L Treps
Cell metabolism, 2018cell.com
Little is known about the metabolism of quiescent endothelial cells (QECs). Nonetheless,
when dysfunctional, QECs contribute to multiple diseases. Previously, we demonstrated that
proliferating endothelial cells (PECs) use fatty acid β-oxidation (FAO) for de novo dNTP
synthesis. We report now that QECs are not hypometabolic, but upregulate FAO> 3-fold
higher than PECs, not to support biomass or energy production but to sustain the
tricarboxylic acid cycle for redox homeostasis through NADPH regeneration. Hence …
Summary
Little is known about the metabolism of quiescent endothelial cells (QECs). Nonetheless, when dysfunctional, QECs contribute to multiple diseases. Previously, we demonstrated that proliferating endothelial cells (PECs) use fatty acid β-oxidation (FAO) for de novo dNTP synthesis. We report now that QECs are not hypometabolic, but upregulate FAO >3-fold higher than PECs, not to support biomass or energy production but to sustain the tricarboxylic acid cycle for redox homeostasis through NADPH regeneration. Hence, endothelial loss of FAO-controlling CPT1A in CPT1AΔEC mice promotes EC dysfunction (leukocyte infiltration, barrier disruption) by increasing endothelial oxidative stress, rendering CPT1AΔEC mice more susceptible to LPS and inflammatory bowel disease. Mechanistically, Notch1 orchestrates the use of FAO for redox balance in QECs. Supplementation of acetate (metabolized to acetyl-coenzyme A) restores endothelial quiescence and counters oxidative stress-mediated EC dysfunction in CPT1AΔEC mice, offering therapeutic opportunities. Thus, QECs use FAO for vasculoprotection against oxidative stress-prone exposure.
cell.com