Disruption of lineage specification in adult pulmonary mesenchymal progenitor cells promotes microvascular dysfunction

Christa F. Gaskill,1 Erica J. Carrier,1 Jonathan A. Kropski,1 Nathaniel C. Bloodworth,2 Swapna Menon,3 Robert F. Foronjy,4 M. Mark Taketo,6 Charles C. Hong,1,6 Eric D. Austin,7 James D. West,1 Anna L. Means,8 James E. Loyd,1 W. David Merryman,2 Anna R. Hemnes,1 Stijn De Langhe,9 Timothy S. Blackwell,1 Dwight J. Klemm,10,11 and Susan M. Majka12

1Department of Medicine, Division of Allergy, Pulmonary and Critical Care Medicine or Division of Cardiovascular Medicine, Vanderbilt University Medical Center, Nashville, Tennessee USA. 2Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee USA. 3Pulmonary Vascular Research Institute, Kochi, and AnalyzeDat Consulting Services, Kerala, India. 4Department of Medicine, Division of Pulmonary and Critical Care Medicine, SUNY Downstate Medical Center, Brooklyn, New York, USA. 5Kyoto University, Sakyo, Kyoto, Japan. 6Department of Pathology and Laboratory Medicine or Department of Medicine, Veterans Affairs Tennessee Valley Healthcare System, Nashville, Tennessee, USA. 7Department of Pediatrics, and 8Department of Surgery, Vanderbilt University Medical Center, Nashville, Tennessee, USA. 9National Jewish Health, Denver, Colorado, USA. 10Department of Medicine, Pulmonary and Critical Care Medicine, Gates Center for Regenerative Medicine and Stem Cell Biology, University of Colorado, Aurora, Colorado, USA. 11Geriatric Research Education and Clinical Center, Eastern Colorado Health Care System, Denver, Colorado, USA. 12Vanderbilt Center for Stem Cell Biology, Vanderbilt University, Nashville, Tennessee, USA.

Pulmonary vascular disease is characterized by remodeling and loss of microvessels and is typically attributed to pathological responses in vascular endothelium or abnormal smooth muscle cell phenotypes. We have challenged this understanding by defining an adult pulmonary mesenchymal progenitor cell (MPC) that regulates both microvascular function and angiogenesis. The current understanding of adult MPCs and their roles in homeostasis versus disease has been limited by a lack of genetic markers with which to lineage label multipotent mesenchyme and trace the differentiation of these MPCs into vascular lineages. Here, we have shown that lineage-labeled lung MPCs expressing the ATP-binding cassette protein ABCG2 (ABCG2+) are pericyte progenitors that participate in microvascular homeostasis as well as adaptive angiogenesis. Activation of Wnt/β-catenin signaling, either autonomously or downstream of decreased BMP receptor signaling, enhanced ABCG2+ MPC proliferation but suppressed MPC differentiation into a functional pericyte lineage. Thus, enhanced Wnt/β-catenin signaling in ABCG2+ MPCs drives a phenotype of persistent microvascular dysfunction, abnormal angiogenesis, and subsequent exacerbation of bleomycin-induced fibrosis. ABCG2+ MPCs may, therefore, account in part for the aberrant microvessel function and remodeling that are associated with chronic lung diseases.

Introduction

Microvascular dysfunction is a key component of chronic lung disease, which is the fourth-leading cause of mortality worldwide. Changes in distal lung tissue structure include enlarged, obstructed, or fibrotic airspaces, decreased microvascular density, and ultimately loss of gas exchange surfaces. A common comorbidity in chronic lung diseases is vasculopathy, or pulmonary vascular dysfunction (PVD), characterized by remodeling and loss of microvessels, which substantially worsens prognosis and limits survival. The relevance of neovascularization to the pathophysiology of PVD has not been resolved, as conflicting evidence depicts angiogenesis as both reparative and pathologic.

The importance of identifying barriers to vascular regeneration in the adult lung is underscored by the current emphasis on cell therapy and bioengineering approaches to address pulmonary vascular pathologies. However, without understanding the endogenous cells that mitigate damage and promote healing, targeted cell or small-molecule therapies and 3D tissue reconstruction will not achieve success. Adult tissue regeneration and repair may in part be attributed to tissue-resident stem cells within the mesenchymal compartment that are capable of vascular differentiation (1). To date, our understanding of the basic biology of adult pulmonary MPCs and the roles they play in microvascular homeostasis versus disease is limited.

MPCs have long been thought to be the “mural” precursor to a differentiated pericyte (2, 3). Interestingly, pericytes have also been hypothesized to be mesenchymal stem cells in adult tissue (4), however, recent studies using lineage tracing have disproved this theory (5). The current understanding of the role pericytes and their mesenchymal precursors play in adult lung disease, de novo angiogenesis, and vascular remodeling is controversial, as conflicting evidence depicts angiogenesis as both reparative and pathologic (6–8). The consensus is that pericytes differentiate toward a myofibroblast lineage and participate in pathological processes. However, a specific role for these cells during fibrosis or adaptive angiogenesis has not yet been defined (9–16). While these hypotheses are intriguing, the studies of tissue-resident...
stromal progenitor cells as well as the origin of pericyte lineages in the adult have been complicated by a lack of unique markers to define specific cell types within heterogeneous mesenchymal pericyte precursors and lineage-specified pericyte populations (Supplemental Table 1; supplemental material available online with this article; https://doi.org/10.1172/JCI88629DS1). A second limitation is the ability to translate findings from cell populations identified in murine tissues to human cells.

In accordance with these gaps in knowledge, the cell-specific mechanisms that regulate the development and progression of the microvascular dysfunction associated with PVD in chronic adult lung diseases are not well defined. PVD is often asymptomatic until severe, when approximately 50% to 70% of the pulmonary vascular bed is lost, both in structure and function, at which point pulmonary vascular resistance and pulmonary artery pressure rise, leading to a diagnosis of pulmonary hypertension (PH) or pulmonary artery hypertension (PAH) (17). Major risks for the development of PVD and PH include genetic mutation, environment (hypoxia, drugs), and immune deregulation and associated diseases (17, 18). To date, the etiology of microvascular remodeling underlying PVD remains unknown and is complicated by a lack of rodent models recapitulating early-stage vasculopathy in the absence of or prior to injury. The current limited understanding of microvascular dysfunction as a precursor to PVD and the lack of diagnostic approaches and criteria emphasize the necessity to understand the mechanisms of microvascular dysfunction in both rodent models and the clinical setting.

To address the aforementioned issues, our laboratory has identified a unique and traceable subpopulation of perivascular, multipotent, lineage-negative MPCs in both adult mouse and human lung on the basis of their expression of ATP-binding cassette subfamily G member 2 (ABCG2). Using a combination of flow cytometry and a low-dose tamoxifen induction lineage-tracing strategy, we defined ABCG2 as a marker to reproducibly label a subpopulation of adult lung MPCs (12, 19). In these studies, we demonstrate for the first time to our knowledge that ABCG2+ label a subpopulation of adult lung MPCs (12, 19). In these studies, using a combination cassette subfamily G member 2 (ABCG2)

RESEARCH ARTICLE

We demonstrate for the first time to our knowledge that ABCG2+ label a subpopulation of adult lung MPCs (12, 19). In these studies, using a combination cassette subfamily G member 2 (ABCG2) and human lung on the basis of their expression of ATP-binding cassette subfamily G member 2 (ABCG2). Using a combination of flow cytometry and a low-dose tamoxifen induction lineage-tracing strategy, we defined ABCG2 as a marker to reproducibly label a subpopulation of adult lung MPCs (12, 19). In these studies, we demonstrate for the first time to our knowledge that ABCG2+ label a subpopulation of adult lung MPCs (12, 19). In these studies, using a combination cassette subfamily G member 2 (ABCG2) and human lung on the basis of their expression of ATP-binding cassette subfamily G member 2 (ABCG2). Using a combination of flow cytometry and a low-dose tamoxifen induction lineage-tracing strategy, we defined ABCG2 as a marker to reproducibly label a subpopulation of adult lung MPCs (12, 19).

Results

Phenotypic similarities between conditional ABCG2-restricted depletion of BMPR2 and stabilization of β-catenin: alteration of microvascular homeostasis in the adult lung. Reactivation of the developmental signaling pathways is often associated with abnormal lineage specification and disease pathology in adult tissues. Coordinated Wnt and BMPR2 signaling influence the proliferation and survival of endothelium and smooth muscle during angiogenesis as well as vascular remodeling of the pulmonary circulation (20–22). We therefore sought to determine how their coordinated signaling in resident lung ABCG2+ mesenchymal precursors regulates pulmonary microvascular homeostasis in vivo and in vitro. To test the hypothesis that resident lung ABCG2+ MPCs contribute to microvascular homeostasis and that disruption of Wnt/BMPR signaling in MPCs leads to the development of microvascular dysfunction in vivo, we exploited the inducible ABCG2+ lineage-labeling strategy (Figure 1A). Wnt signaling was enhanced in ABCG2+ lung MPCs in vivo by induced expression of a mutant β-catenin. This model was achieved by crossing a lox-stop-lox–mutant β-catenin exon 3 mouse (Ctnnb1F^{ΔEx3} mouse), which removes glycogen synthase kinase 3 β (GSK3β) phosphorylation sites that target β-catenin for degradation, with bigenic lineage-labeling Abcg2-CreERT2 Rosa26-mTmG mice (23–25). Adult trigenic mice were also engineered to genetically deplete 1 copy of Bmpr2 by crossing Abcg2-Cre^{ERT2}, Rosa26-mTmG (23), and Bmpr2^{fl/−} (26) lines, resulting in Abcg2-Cre^{ERT2} Bmpr2^{fl/−} Rosa26-mTmG mice (referred to herein as Bmpr2^{−/−} mice). In these optimized low-dose tamoxifen systems, ABCG2+ lung MPCs expressed enhanced GFP (eGFP) and 1 copy of Bmpr2 or stabilized β-catenin (Figure 1B)

Genetic depletion of BMPR2 or stabilization of β-catenin in ABCG2+ lung MPCs resulted in their expansion (Figure 1, B and D–F). Increased numbers of eGFP-expressing ABCG2+ lung MPCs were present on days 2 and 14 after induction in complement flow cytometric and immunostaining analyses (Figure 1, B and D–F, and Supplemental Figure 1A). The increased fluorescence staining intensity observed in the tissue sections versus the data shown in the flow cytometric dot plots is likely due to the detection of multiple long cell processes emanating from a single MPC (Figure 1, D–F). Dysfunctional BMPR2 and Wnt signaling in ABCG2+ lung MPCs also increased the microvessel dysfunction documented by vascular leak on day 14 (Figure 1C).

The expanded pool of ABCG2+ lung MPCs in both Bmpr2^{−/−} and β-catenin–overexpressing (βOE) mice was retained after 18 to 20 weeks in vivo (Supplemental Figure 2A). Proliferation of ABCG2+ lung MPCs was detected by proliferating cell nuclear antigen (PCNA) and eGFP localization on days 2 and 14 in lung tissue sections (Supplemental Figure 1C and Supplemental Figure 3, A–C). The ABCG2+ lung MPCs did not colocalize with large arterioles or smooth muscle α actin–expressing (α-SMA–expressing) cells (Figure 1, L–T, and Supplemental Figure 1B).

To evaluate the role of Wnt and BMPR2 signaling in ABCG2+ lung MPCs in lung microvascular homeostasis, we analyzed WT, Bmpr2^{−/−}, and JOE mice at 20 weeks (Figure 1A and Supplemental Figure 4A). Lung microvascular function and structure were assessed by right ventricular systolic pressure (RVSP) as well as morphometric measurements. We found that both Bmpr2^{−/−} and JOE mice had a subtle increase in RVSP, suggesting a microvascular defect (Figure 1G). Morphometric analysis identified a corresponding loss of microvessel density in Bmpr2^{−/−} mice that was more variable in the βOE strain (Figure 1, H–I) in the absence of
increased muscularization of microvessels, collagen deposition, and inflammatory infiltrate (Figure 1K, and Supplemental Figure 2, B and C). Strikingly, both the Bmpr2fl/+ and JOE mice had significantly decreased numbers of α-SMA microvessels (Figure 1, D–F, I, and L–N), suggesting a decrease in differentiated pericytes. We also performed analyses to detect colocalization of eGFP-derived MPCs and coagulation factor 8 (F8) or α-SMA. No colocalization of MPC-derived cells or vascular markers was detected. The decreased microvessel density in the Bmpr2fl/+ mice paralleled a loss of distal lung tissue structure or airspace enlargement, as measured by the increased mean linear intercept (MLI) (Figure 1K). Eighteen to twenty weeks after induction, lineage-tracing analyses of ABCG2+ lung MPCs from Bmpr2fl/+ and JOE mice demonstrated that perivascular eGFP-expressing MPCs or derived cells did not colocalize with α-SMA-expressing cells (Figure 1, Q–T), whereas the WT MPCs did colocalize with α-SMA (Figure 1, O and P). The lack of α-SMA expression by microvascular pericytes as a result of BMPR2 inactivation and β-catenin stabilization suggests that defects in function and differentiation of the expanded MPC pool may underlie the observed decrease in microvessel density and loss of tissue structure. Taken together, these data illustrate that microvessel loss adversely affects distal lung tissue structure and that the Bmpr2fl/+–driven phenotype is only partially dependent on increased β-catenin signaling.

Conditional stabilization of β-catenin or depletion of BMPR2 in murine ABCG2 MPCs parallels a loss of clonogenic potential and increased pericyte lineage specification without maturation. To confirm that BMPR2 and Wnt/β-catenin signaling in ABCG2+ lung MPCs regulates their stem cell characteristics, we performed CFU-fibroblast (CFU-F) analyses to enumerate the presence of clonogenic progenitors and flow cytometric analyses to characterize the cell-surface determinants characteristic of murine and human MPCs. We also analyzed the expression of pericyte lineage specification via protein and gene expression. Isolation and characterization of murine ABCG2+ lung MPCs paralleled our findings in the in vivo models and in human MPC lines. Both Bmpr2fl/+ and JOE ABCG2+ murine lung MPCs showed a decreased ability to form CFU-F, which is indicative of a loss of functional clonogenic progenitors (Supplemental Figure 4B) (27). We observed that the loss of clonogenic potential paralleled an increase in pericyte lineage specification compared with WT MPCs, keeping in mind that lineage specification is not equal to terminal differentiation into mature and functional contractile pericytes (28, 29).

Bmpr2fl/+ and JOE ABCG2+ lung MPCs also had significantly increased gene and protein expression of the pericyte markers chondroitin sulfate proteoglycan 4 (Cspg4, encoding neural/glial antigen 2 [NG2]) and regulator of G protein signaling 5 (Rgs5) (Figure 2, A and B), similar to that observed with BMPR2 inhibition in WT ABCG2+ MPCs (30). In the WT MPCs, we detected NG2 as a single band, while multiple bands were present at varying intensities in the JOE and Bmpr2fl/+ MPCs (Figure 2B). These multiple bands are the result of extracellular processing of the NG2 proteoglycan that may then regulate signaling as well as migration (31). We again identified increased gene and protein expression of the Wnt/β-catenin target WNT1-inducible signaling pathway protein 1 (Wisp1) (Figure 2, A and B) in Bmpr2fl/+ MPCs, which may regulate mesenchymal proliferation (32). We also observed altered gene expression of Wnt inhibitors, with a decrease in secreted frizzled-related protein 2 (Sfrp2) expression, while Sfrp1 expression increased in the JOE ABCG2+ MPC line. Bmpr2fl/+ and JOE ABCG2+ MPCs showed increased expression of CD146 (Figure 2C and Supplemental Figure 4H), which is associated with pericyte or endothelial lineage specification from MPCs (33, 34). JOE MPCs also had decreased expression of CD105 (also known as endoglin), indicative of an attenuated potential for terminal myogenic or α-SMC differentiation and increased invasiveness (35, 36). To characterize β-catenin and its target, cyclin D1, we performed immunostaining on MPCs. β-Catenin localized to the membrane tight junctions or cytoplasm in WT cells, while cyclin D1 was not detected (Figure 2D). In contrast, we found that Bmpr2fl/+ and JOE ABCG2+ MPCs demonstrated decreased β-catenin localization to the membrane tight junctions. Furthermore, cyclin D1 was highly immune reactive in the cytoplasm of Bmpr2fl/+ MPCs and in the nuclei of JOE MPCs. Cytoplasmic cyclin D1 can regulate invasion as well as survival (37), while nuclear localization is typically associated with proliferation and survival (38).

Second, we documented that suppression of the BMPR signaling pathway increased Wnt/β-catenin activity as well as expression of Cspg4 (NG2) and Wnt targets in isolated murine WT ABCG2+ MPCs using the small-molecule BMPR signaling inhibitor 4-[[6-[4-[[1-(methylthio)phenyl]pyrazolo[1,5-a]pyrimidin-3-yl]-quinoline (DMH) (Figure 2E and Supplemental Figure 5, A and B). DMH inhibits SMAD1/5/8 phosphorylation in a BMPRI-specific manner, inhibiting signaling of both BMPRI and BMPR2 (39). Activation of Wnt signaling correlated with increased gene expression of the pericyte marker Cspg4 (NG2) (28), decreased gene expression of Wnt inhibitors (dickkopf Wnt signaling pathway inhibitor 1 [Dkk1] and Sfrp1/2) and collagen 1 (Coll1), as well as...
Figure 2. Isolated murine and human ABCG2+ lung MPCs demonstrate increased pericyte lineage specification in response to decreased BMPR2 or increased Wnt/β-catenin signaling. (A–F) BMPR2 knockdown and canonical Wnt activation in murine ABCG2+ lung MPCs increased pericyte lineage commitment. Sixteen weeks after induction, WT, Bmpr2-ko, and βOE MPCs from lineage-labeled mice were isolated by flow sorting to detect eGFP fluorescence. (A) Following expansion, qRT-PCR analysis was performed to examine the expression levels of pericyte lineage–specific genes and canonical Wnt targets. (B) Western blot analysis was performed to quantify the expression of NG2 and WISP1 proteins. A representative blot from two independent blots presented. (C) Isolated MPCs were stained with antibodies to detect cell-surface determinants characteristic of MPCs and pericytes. Gates were set based on fluorescence minus one control (FMO) controls. SSC-A, side scatter, area scaling. (D) Immunostaining was performed to localize β-catenin or cyclin D1 (Cnd1) (red) in isolated cells (blue = DAPI–stained nuclei). Scale bars: 100 μm. (E) and (F) BMP signaling was decreased in isolated murine WT lung MPCs using the small-molecule inhibitor DMH1, independently 2 times. (E) Canonical Wnt signaling activity was measured 48 hours after transfection using a TCF/LEF dual-luciferase reporter assay and repeated independently 3 times. (F) Canonical Wnt target and pericyte lineage gene expression levels were evaluated after 48 hours by qRT-PCR. (G and H) Human PAH ABCG2+ lung MPCs. (G) qRT-PCR analyses of control, HPAH, and IPAH human ABCG2+ lung MPCs were performed to quantify the relative levels of gene expression for the pericyte lineage markers CSPG4, ACTA2, RGS5, the Wnt pathway targets DKK1, SFRP1, and WISP1, as well as the matrix proteins COL1A1 and COL1A3 and the cell-cycle regulator CCND1 (n = 3–4). (H) Protein levels of NG2 and the β-catenin target cyclin D1 were quantified by Western blotting (n = 3–5). Each assay was performed independently 2 times. Data are presented as the mean ± SEM. *P < 0.05, **P < 0.01, and ***P < 0.001, by 1-way ANOVA followed by Tukey’s post-hoc test (for murine qRT-PCR) and a nonparametric Wilcoxon–Kruskal–Wallis test and χ² approximation (for patients’ samples).

Characterization of the human ABCG2+ lung MPCs paralleled our findings in the murine models, in that the PAH patients’ MPC samples with abnormal BMPR2 signaling (Supplemental Figure 6C) showed decreased CFU-F potential (Supplemental Figure 6E), while expressing characteristic MPC cell-surface determinants (Supplemental Table 2) (27, 40). Human PAH ABCG2+ lung MPCs also showed increased gene expression of the pericyte marker CSPG4 (28) and the Wnt target and regulator of proliferation CCND1 (Figure 2G). We found that collagen expression was not significantly changed, reminiscent of the murine in vivo model. We detected decreased gene expression for the Wnt inhibitor DKK1 and the regulator of G protein signaling RGS5. RGS5 is expressed by pericytes and correlates with maturation, contraction, and vasoreactivity (41, 42) as well as activation, an angiogenic switch favoring neovascularization and vessel remodeling in development, repair, and pathology (43). Gene expression was paralleled by increased protein expression of the pericyte marker NG2 and the Wnt targets WISP1 and cyclin D1 (Figure 2H). WISP1 positively regulates BMP signaling by enhancing BMP2 ligand activity and is also upregulated in pulmonary fibrosis (32, 44). These changes in gene expression were MMC specific, as they were not identifiable in lung fibroblasts from patients with PH (Supplemental Figure 6F). Increased expression of the regulators of mesenchymal proliferation WISP1 and CCND1 and deregulated pericyte differentiation highlight ABCG2+ MPCs as candidates for the proliferative and undifferentiated cells that comprise vascular lesions and that are characteristic of human pathology and rodent models of disease (45, 46). ACTA2 (encoding α-SMA) levels were variable among patients’ samples, and overall, the levels were not significantly different from those detected in WT samples, suggesting that the underlying mechanisms of decreased contraction may vary by cell-specific defect and involve deregulated nucleation of actin filaments, stress fiber formation, as well as defective terminal differentiation (47).

Abnormal ABCG2+ MPC pericyte lineage maturation decreases microvascular contractility both in vivo and in vitro. A unifying feature of our ABCG2-driven murine models of microvascular dysfunction is the identification of decreased α-SMA–invested microvasculature, complemented in vitro by pericyte specification in the absence of full maturation. Together, our findings highlight a defect in the maturation of pericytes from immature to mature contractile pericytes. These findings are reminiscent of the plasticity described for vascular smooth muscle cells (vSMCs), which are characterized by 2 major phenotypes: differentiated and contractile and dedifferentiated and synthetic (48–50). Therefore, to evaluate whether the loss of α-SMA expression translates into a functional vascular defect, we quantified vascular contractility in vivo and in isolated MPCs in vitro. We measured the contractility of pulmonary vessels indirectly via RVSP measurement in ABCG2+ lung MPCs in Bmpr2-ko and βOE models in response to acute epinephrine challenge. Both mouse models showed decreased contraction relative to that seen in WT mice, as indicated by the significantly decreased RVSP (Figure 3, A and B). We then analyzed isolated murine and human ABCG2+ MPCs in complementary in vitro contraction assays. ABCG2+ lung MPCs derived from Bmpr2-ko and βOE mouse lungs as well as from patients with heritable PAH (HPAH) and patients with idiopathic PAH (IPAH) demonstrated significantly less contractility than did WT control MPCs (Figure 3C).

Increased β-catenin signaling is associated with abnormal differentiation of ABCG2+ lung MPCs and exacerbation of bleomycin-induced fibrosis in vivo. Mesenchymal cell differentiation into pericytes and myofibroblasts was proposed, beginning in 1970, as being associated with both wound healing and scar formation (2), as well as with fibrotic remodeling in the lung, kidney and retina (2, 9, 12, 14, 28, 51–54). Our previous studies demonstrated that ABCG2+ MPCs localize to remodeling parenchyma and microvessels following bleomycin injury and during peak fibrosis (12). Here, we expand these findings and evaluate the functional significance of abnormal lineage specification of ABCG2+ MPCs in response to injury. We performed comparative bleomycin-induced fibrosis experiments using βOE and WT lineage-labeled mice (Figure 4 and Supplemental Figure 7). Following bleomycin injury, the WT MPC populations significantly increased in number on days 2–14, while the βOE BMC population doubled between days 7 and 14, which was quantitatively 3-fold greater than the WT MPC population on day 14 (Supplemental Figure 7). In response to bleomycin, relative to WT mice, the βOE mice had increased mortality, increased fibrosis as measured by Ashcroft scoring and collagen content, as well as increased Fulton indices, indicative
tissue, eGFP labeled the OE MPC lineage that formed β profiles, and microvascular histology. In bleomycin-injured lung idiopathic pulmonary fibrosis (IPF), MPC global gene expression bleomycin-induced fibrosis as well as analyses of isolated human we performed lineage-tracing analysis in this murine model of lying cell-based mechanism for the exacerbated fibrosis observed, abnormal angiogenesis during fibrosis. In order to ascertain an under-

protein networks were synthesized for genes that were differen-
determine whether these findings could translate to the micro-

We next examined human lung tissue samples from control, IPF, and HPAH patients for the existence of NG2-, α-SMA–, and NG2-lined microvessels. NG2 and α-SMA expression was colo-

cular lining of the MPC phenotype.

We next examined isolated human lung ABCG2+ MPCs to
tially expressed in IPF ABCG2+ MPCs compared with control MPCs on the basis of a significant absolute increased or decreased fold change of more than 1.7 (P < 0.05, by moder-

Discussion
The findings from these studies expand our understanding of the role lung MPCs, and the pericytes derived from them, play during pulmonary microvascular homeostasis and adaptive angiogene-
sis following injury. We demonstrate that ABCG2+ MPCs direct-
ly influence lung microvascular function. Specifically, this work

of PVD (Figure 4, A–D, F and G). Further analyses of the pulmo-

Nurt/β-catenin–activated ABCG2+ lung MPCs participate in abnormal angiogenesis during fibrosis. In order to ascertain an under-

Wnt/β-catenin signaling in ABCG2+ MPCs exacerbates the development of fibrosis, with an underlying defect in the pulmonary microvasculature.

Wnt/β-catenin–activated ABCG2+ lung MPCs participate in abnormal angiogenesis during fibrosis. In order to ascertain an under-

mice, eGFP labeled the βOE MPC lineage that formed α-SMA structures resembling microvessels in the distal lung (Figure 5, A, C, E). Further analysis of endothelial investment of the structures via F8 localization demonstrated that the vascular structures did not have an endothelium-lined lumen (Figure 5, B, D, F).

We next analyzed isolated human lung ABCG2+ MPCs to
determine whether these findings could translate to the micro-

vascularastrocity, the innate characteristics that define them as progenitor cells make them an ideal candidate. The capacity of these MPCs to dif-

We next examined human lung tissue samples from control, IPF, and HPAH patient–derived lung MPCs therefore defined a link between Wnt and BMP signaling in the mainte-

We next analyzed isolated human lung ABCG2+ MPCs to
accumulation with fibrosis (Figure 6). Importantly, these findings affirm that maintaining a proper balance of Wnt signaling in lung ABCG2+ MPCs promotes proper pericyte development for the maintenance of microvascular homeostasis and the regulation of angiogenesis following injury.

Pericytes may be considered the SMC of the microvessels or capillary beds (28, 56). While related in lineage, the pericyte is typically more intimately associated with the endothelium than delineates that the coordinated regulation of Wnt/β-catenin signaling in ABCG2+ mesenchymal pericyte progenitors, autonomously or downstream of BMPR/TGF-β signaling, is a key determinant of lung microvascular integrity and is intimately linked with the alveolar epithelium. Indeed, increased canonical Wnt signaling enhanced ABCG2+ MPC proliferation and promoted the specification of these cells to functionally deficient, proangiogenic pericytes, in lieu of their active contribution to myofibroblast accumulation with fibrosis (Figure 6). Importantly, these findings affirm that maintaining a proper balance of Wnt signaling in lung ABCG2+ MPCs promotes proper pericyte development for the maintenance of microvascular homeostasis and the regulation of angiogenesis following injury.

Pericytes may be considered the SMC of the microvessels or capillary beds (28, 56). While related in lineage, the pericyte is typically more intimately associated with the endothelium than
are vSMCs, which are also distinguished by location, morphology, and markers (57). vSMC phenotypic plasticity has been described in multiorgan development as well as in various adult diseases characterized by vascular remodeling (49, 50). The plasticity of vSMCs is represented by 2 major phenotypes: differentiated and contractile and dedifferentiated, proliferative, migratory, and synthetic (48–50), similar to the differentiation of MPCs into the pericyte lineage we have documented in these studies. To date, the molecular mechanisms underlying the phenotypic switches and their regulation of homeostasis and adaptive versus patholog-

Figure 5. Wnt activation of lung MPCs promotes the formation of abnormal vascular structures during fibrosis. (A–F) Adult WT and βOE mice were induced with i.p. tamoxifen (0.5 mg total) and treated i.t. with 0.15 U bleomycin or PBS vehicle 2 weeks later. Immunostaining was performed on sections of lineage-labeled mouse lungs on day 14 to localize eGFP-labeled (green) MPCs and their derivatives as well as α-SMA (red) and F8 (white). Representative images from βOE mouse lungs are shown (n = 5–6). (G) Human IPF ABCG2+ lung MPCs showed an increased pericyte lineage commitment and alterations in Wnt target gene expression as detected by qRT-PCR. The pericyte lineage markers CSPG4, ACTA2, and RGS5, the Wnt pathway targets DKK1, SFRP1, and WISP1, as well as the matrix proteins COL1A1 and COL1A3 and the cell-cycle regulator CCND1 were analyzed (n = 3–4). *P < 0.05, by nonparametric Wilcoxon-Kruskal-Wallis test. (H) Human control, IPF, and HPAH tissue sections were immunostained to detect NG2 (red) and α-SMA (green) (n = 3). Overlapping expression of α-SMA and NG2 (yellow) was localized to microvascular regions of remodeling. (I) NG2-lined microvessels were also present in human IPF lung tissue. Arrows indicate luminal NG2+ cells. Scale bars (C–F, H, and I): 50 μm. Original magnification (A and B): ×4. Images in C and D are enlargements of the highlighted boxes in A, and images in D and F are enlargements of highlighted boxes in B.
ical angiogenesis remain to be deciphered. Thus, there is a paucity of knowledge defining the process of de novo pericyte differentiation and maturation from the amorphous mesenchyme in the adult lung. Appropriate mesenchymal specification to pericytes is likely important during microvascular homeostasis, maintenance of the distal airspace structure, and development of the vascular dysfunction associated with chronic lung diseases (58).

The lack of suitable markers to trace mesenchymal-to-pericyte differentiation in the adult lung has limited our understanding of the role of pericytes in homeostasis and disease. Here, we established ABCG2 as a genetic marker that facilitates the study of adult pericyte progenitor specification from the pulmonary mesenchyme. While ABCG2 has been used as a marker in our in vivo or in vitro studies. Early expansion of ABCG2+ MPCs in vivo resulted in the expansion of this progenitor population with the microvascular endothelium. Vascular leak is a key indicator of vascular endothelial dysfunction and is known to precede remodeling, including both microvessel pruning and muscularization (68). Thus, our findings indicate that ABCG2+ MPC-to-pericyte differentiation is an important determinant in the maintenance of proper lung function and health.

The impact of ABCG2+ mesenchymal progenitors on tissue function probably increased as these progenitors accumulated over time. In fact, prolonged ABCG2+ stabilization of β-catenin and depletion of BMPR2 decreased terminal or functional pericyte differentiation, which was confirmed by the reduced expression of α-SMA and the loss of F8+ microvessel density in vivo. The distal airspace enlargement was likely due to the loss of mesenchymal progenitor function, compounded by the loss of the supporting microvasculature. The idea of a vascular component contributing to the loss of distal lung tissue structure or emphysema/chronic obstructive pulmonary disease (COPD) has been demonstrated with the use of SUGEN5416 as a VEGF blockade (69), since VEGF is a survival factor for both lung endothelial and mesenchymal cells (70). These studies highlight the fact that intact ABCG2 mesenchymal progenitor function is necessary to maintain both microvascular and alveolar epithelial survival and lung function.

Pulmonary microvascular function is impaired in both PAH and IPF as a consequence of remodeling and collagen deposition or of fibrosis, which are associated with the microvascular structures. The etiology of early or adaptive microvascular remodeling remains unknown and is complicated by conflicting evidence of angiogenesis as reparative or pathologic in both PAH and IPF (6–8, 13, 71, 72). Contradictory data also suggest that microvesSEL density decreases or increases during IPF, depending on the localization and severity of fibrosis (6–8). In our murine models of bleomycin-induced fibrosis, ABCG2+ MPCs associated with “traditional” α-SMA or F8+ microvessels in alveolar tissue peripheral to the actively remodeling regions. However, in BOE lung tissue, we detected MPC contribution to atypical vascular structures in the fibrotic areas that were devoid of both F8 endothelium and α-SMA, which may be the reason the traditional vascular density was seen to be decreased in the scar region (6–8). The finding of these structures in βOE, but not WT, lung tissue may be due to the increase in labeled lineage-derived cells (3-fold more than...
in WT tissue). Additionally, the increased expression of NG2 or decreased CD105 by these cells may increase their angiogenic and invasive nature (31, 36). However, whether increased Wnt signaling in MPCs results in long-term fibrosis or enhanced repair is an avenue of current investigation.

In these studies, we provide the first evidence to our knowledge that Wnt/β-catenin signaling regulates MPC-derived pericyte progenitor angiogenic function during fibrosis in the dense fibroblast “scar” region. Translating our findings in murine lungs to human disease, we identified luminal NG2+ microvessels in IPF lung tissue. These alternative vascular structures have been described as leading angiogenic tubes composed of pericytes during development, as well as adult tumor vasculature, where nontraditional angiogenesis was previously termed “vascular mimicry” (73–77). Abnormal vessels formed by pericytes or epithelial cells regulate cell metastases, inflammation, and the overall tumor microenvironment. In addition to influencing angiogenesis and the subsequent recruitment of endothelium, these pericytes may also influence the surrounding myofibroblasts, as pericytes in the skin have also been shown to regulate the recruitment of epithelium during wound healing in the absence of angiogenesis (78). Such mesenchyme-derived tubes could influence the extent of injury or fibrosis by influencing the tissue microenvironment.

Our current and previous studies directly link increased β-catenin signaling with deregulated BMPR signaling (22, 79). These data suggest that intact BMP signaling promotes the differentiation of pulmonary mesenchymal pericyte progenitors and suppresses Wnt/β-catenin signaling, which is required for the self-renewal and proliferation of progenitor pools. Another important observation from these studies is that conditional genetic depletion of BMPR2, stabilization of β-catenin in ABCG2+ MPCs, as well as bleomycin injury in vivo resulted in expansion of the progenitor pool, while terminal contractile function was not achieved. Previous studies have also reported the expansion of undifferentiated progenitor pools in other systems as a result of genetic depletion of BMPR, a decrease of BMP signaling, or an increase of β-catenin activation (80–88). Conditionally decreased BMPR signaling in adult mice drove the expansion of progenitor pools in which terminal differentiation in multiple cell types was inhibited via the activation of β-catenin signaling (80–82). β-Catenin signaling has also been identified as an essential component of stem cell, mesenchymal cell, and SMC proliferation and differentiation in multiple models of development (83–88). Therefore, the effects of Wnt/β-catenin activation are specific to the cell type, stage of differentiation, and the factors present in the microenvironment.

Studies of adult differentiated vSMCs and pericytes have previously reported the coordinated regulation of both canonical and noncanonical Wnt signaling by BMP. Genetic mutations in the BMPR2 gene or dysregulated BMPR2 signaling are associated with the development of PVD including pulmonary veno-occlusive disease (PVOD) (89), PAH (90, 91), as well as PH associated with COPD and pulmonary fibrosis (PF) (92). Thus, impaired BMPR2 signaling is a unifying feature in the pathogenesis of PVD and the development of PH. Here, we demonstrate for the first time to our knowledge that coordinated canonical Wnt/BMPR2 signaling has an impact on distal lung architecture by regulating MPC-to-pericyte differentiation and that deregulated BMPR/
tive MPCs and CD45 eGFP+ cells 48 hours following induction. This experiment assumed that differentiated microvascular endothelial cells (MVECs) are present in the eGFP fraction, along with other lung cells. The results showed that recombination was detectable in the GFP fraction of putative MPCs and not the GFP fraction containing MVECs and other lung cells (Supplemental Figure 9C).

To validate that resident lung MPCs were not derived from the ABCG2+ hematopoietic population, we performed BM transplantation using murine ABCG2 lineage–labeled whole BM (Supplemental Figure 10). Genetic depletion of BMPR2 and eGFP expression was confirmed by isolating eGFP-expressing ABCG2+ lung MPCs from explanted murine lungs via flow sorting, in vitro expansion, and subsequent Western blot analysis to quantitate decreased BMPR2 protein levels (Supplemental Figure 4, C and D). Significantly enhanced canonical Wnt signaling in βOE ABCG2+ lung MPCs was confirmed in isolated cells using a T cell factor/lymphoid-enhancer factor (TCF/LEF) luciferase reporter assay and by increased Axin2 expression (Supplemental Figure 4, E and F).

Phenotyping of PVD. Vascular permeability in the lungs was quantitated using an AngioSense 750EX Fluorescent Imaging Agent (Perkin-Elmer) with spectroscopic imaging in a LI-COR Pearl Impulse Small Animal Imager (97). Elevated pulmonary artery pressure was documented indirectly by the measurement of RVSP and microvascular morphometry (98). The average interalveolar distance was assessed by quantification of MLI in lungs inflated with agarose under constant temperature and pressure as described previously (99, 100). Immuno-fluorescence staining was performed to lineage trace eGFP-labeled MPCs by quantitation of MLI in lungs inflated with agarose under constant temperature and pressure as described previously (99, 100). Immuno-fluorescence staining was performed to lineage trace eGFP-labeled lung MPCs and localize α-SMA (the reagents used are listed in Supplemental Tables 4 and 5).

Isolation and characterization of murine and human primary lung MPCs. Murine Bmpr2fl/fl and βOE MPCs were isolated from the lineage-tracing murine strains on the basis of eGFP expression and analyzed by flow cytometry (Supplemental Figure 4A). Flow sorting, along with antibody labeling of ABCG2+ cells, was used to isolate human lung MPCs from lung tissue explants from WT controls as well as from a patient with a known BMPR2 mutation and decreased BMPR2 signaling; a patient with HPAH and decreased BMPR2 signaling without a known BMPR2 mutation; a patient with IPAH; and a patient with IPF. The techniques for isolation and characterization of MPCs were previously described, and ABCG2 was validated as a cell-surface marker for both murine eGFP-labeled MPCs and human MPCs (12) (Supplemental Figure 4G, Supplemental Figure 6, A-E, and Supplemental Table 2).

In vitro contraction. To test the contractibility of ABCG2+ MPCs in response to treatments, cells were plated on collagen discs and photographed over time. ImageJ (NIH) was used to calculate the area in pixels squared of each gel at each time point. The fold change in pixels squared for the 24-hour and 48-hour time points was calculated as the ratio of pixels squared to the gel area at the 0-hour time point.

Modulation and detection of BMPR2 and Wnt signaling. To determine the cellular response to the BMPR inhibitors dorsomorphin (DM) and dorsomorphin homolog 1 (DMH1), which were gifts of C. Hong (Vanderbilt University Medical Center), MPCs were plated at a concentration of 60,000 cells per well in medium containing 20% serum. The cells were allowed to remain in 20% serum medium for 24 hours. After 24 hours, the medium was changed to 20% serum treatment medium containing DM (5 μM), DMH1 (10 μM), or DMSO vehicle (22). RNA lysates were collected at 48 hours and protein lysates at 72 hours for analyses of gene and protein expression. Quantitative reverse transcription sPCR (qRT-PCR) assays were performed in triplicate (for the 3 wells collected), and the levels of analyzed genes were normalized to hypoxanthine-guanine phosphoribosyltransferase (HPRT) abundance. The primers used are presented in Supplemental Table 5. qRT-PCR experiments were repeated independently 3 times.

Transcriptome analysis. Array analysis and qRT-PCR were performed as described previously (19, 101), in triplicate or with 3 or more independent patient samples. Briefly, total RNA was prepared with QIAGEN RNA Isolation Kit reagents (QIAGEN) for total RNA isolation and analysis of gene expression. qRT-PCR assays were performed in triplicate, and the levels of analyzed genes were normalized to HPRT abundance (GAPDH or HPRT; the list of primers used is provided in Supplemental Table 4). Complimentary DNA generated from amplified RNA was hybridized to duplicate Affymetrix Human Gene 1.0 ST chips. Differential expression analysis was performed using Bioconductor, version 3.2 (R 3.2.2). Raw probe-level data were read using the oligo package. After normalization with RMA, a moderated t test implemented in the limma package was used for differential expression testing. A minimal fold change of 1.7, up or down, and a P value of less than 0.05 were used as criteria for defining differentially expressed genes. Expression values for these genes are represented in a heatmap that was generated using the heatmap function in R. The data were deposited in the NCBI’s Gene Expression Omnibus (GEO) database (GEO GSE94060). The STRING database (http://string-db.org/, accessed December 10, 2015) and PathVisio 3.2.1 (https://www.pathvisio.org/) were used to schematically represent the functional association network of differentially expressed genes.

Quantitation of collagen. Ten fields of view (FOV) per two sections, four sections per mouse, of trichrome-stained mouse lungs were photographed at ×20 original magnification. The resulting color images were scanned to quantitate the number and intensity of blue (collagen) positive pixels relative to red pixels (n = 7–8 per group). The images were scanned using Fiji (ImageJ, version 2.0.0-rc-43/1.51a) with a custom plug-in written by M. Majka (Brentwood, Tennessee, USA). The tool was written in the ImageJ macro language (https://imagej.nih.gov/ij/developer/macro/macos.html) to compare the ratio of the blue/red color components of each pixel in a given image. This macro was designed so that all pixels that had a ratio over the desired threshold to the color white set all other pixels to the color black and returned the number of white pixels. The output was the number of pixels in the image whose blue/red ratio was above the specified threshold limit on the basis of a positive and negative control image.

Statistics. Mouse model data were analyzed by 1-way ANOVA followed by Tukey’s honest significant difference (HSD) post-hoc test. Murine qPCR data were analyzed by 1-way ANOVA followed by Tukey’s post-hoc test. Patients’ samples were analyzed using a non-parametric Wilcoxon-Kruskal-Wallis test and χ² approximation. All analyses used JMP version 5.0.12 (SAS Institute Inc.). All data are presented as the mean ± SD or SEM. A P value of less than 0.05 was considered statistically significant.

Study approval. The Vanderbilt University IACUC approved all animal procedures and protocols. These studies used banked patient cell lines obtained via IRB protocol 9401, which was approved by the IRB committee of Vanderbilt University Medical Center. Patients provided informed consent under this IRB for the generation and storage of their cell lines.
Author contributions
Conceptualization: SMM and CG; methodology: SMM, CG, SM, EJC, NCB, RFF, WDM, EDA, ALM, ARH, JDW, and SDL; investigation: SMM, CG, SM, TSB, EJC, ARH, and JDW; writing of the original draft: SMM and DJK; review and editing of the manuscript: SMM, DJK, SDL, ARH, WDM, RFF, CG, and TSB; funding acquisition: SMM; resources: TSB, JEL, JAK, MMT, CCH, and ALM; and supervision: SMM.

Acknowledgments
The authors would like to express their appreciation to Dr. J. Fessel (Vanderbilt University Medical Center) for discussions. The authors also acknowledge the technical assistance provided by S. Marriott, S. Majka, L. Hedges, S. Shay, N. Penner, and L. Hoaglin of the University of Colorado Cancer Center (UCCC) Skin Disease Research Center (SDRC) Morphology and Phenotyping Core (P30 AR 057212); Catherine E. Alford and the members of the Research Flow Cytometry Laboratory at the Nashville VA Medical Center; and Karen Helm at the University of Colorado Cancer Center’s Flow Cytometry Shared Resource (P30-CA046934 NCI). This work was funded by grants to S.M. Majka from the NIH (RO1HL091105 and NIH R01HL1659701). Additional funding was also provided by the NIH (RPG-5PO1HL08800-04, to JEL, principal investigator). The experiments were performed at the University of Colorado’s Cancer Center Microarray core facility (NCI P30 CA 46934-14). The project was supported in part by the National Center for Research Resources (UL1 RR024975-01) and is now at the National Center for Advancing Translational Sciences (2 UL1 TR000445-06). The content is solely the responsibility of the authors and does not necessarily represent the official views of the NIH.

Address correspondence to: Susan M. Majka, Associate Professor of Medicine, Vanderbilt University, Division of Allergy, Pulmonary and Critical Care Medicine, 1161 21st Avenue S, T-1218 MCN, Nashville, Tennessee 37232, USA. Phone: 303.883.8786; E-mail: Susan.M.Majka@vanderbilt.edu.

38. Sumrejkanchanjak P, Tamamori-Adachi M, Matsu-
naga Y, Eto K, Ikeda MA. Role of cyclin D1 cyto-

41. Cho H, Kozasa T, Bondjers C, Betsholtz C, Kehrl JH. Pericyte-specific expression of Rgs5: implications for PDGF and EDG receptor sig-

42. Holobovatsky V, et al. Regulator of G-protein signaling 5 controls blood pressure homeo-

43. Berger M, Bergers G, Arnold B, Hämmerling G, Ganss R. Regulator of G-protein signaling 5 controls blood pressure homoeo-

45. Oka M, et al. Rho kinase-mediated vasocon-

47. Carraro G, et al. miR-142-3p balances prolif-

51. Oka M, et al. Rho kinase-mediated vasocon-

52. Oka M, et al. Rho kinase-mediated vasocon-

54. Oku M, et al. Rho kinase-mediated vasocon-

57. Armulik A, Abramsson A, Betsholtz C, Kehrl JH. Pericyte-specific expression of Rgs5: implications for PDGF and EDG receptor sig-

59. Jackson KA, et al. Regeneration of ischemic car-

60. Majka SM, Jackson KA, Kienstra KA, Majesky MW, Goodell MA, Hirschi KK. Distinct progeni-

61. Li C, et al. Progenitors of secondary crest myofibroblasts are developmentally com-

64. Sheikh AQ, Lighthouse JK, Greif DM. Recapitula-

66. Sheikh AQ, Lighthouse JK, Greif DM. Recapitula-

68. Sheikh AQ, Lighthouse JK, Greif DM. Recapitula-

69. Tuder RM, et al. Oxidative stress and apoptosis caused by an inherited mutation in bone mor-

74. Ozerdem U, Stallcup WB. Early contribution of pericytes to angiogenic sprouting and tube for-

75. Song S, Ewald AJ, Stallcup W, Werb Z, Bergers G. PDGFRbeta+ perivascular progenitor cells in tumours regulate pericyte differentiation and vas-

79. Gaskill C, et al. Shared gene expression patterns in mesenchymal progenitors derived from lung and epidermis in pulmonary arterial hyperten-

81. Bohnenpoll T, Trowe MO, Wojahn I, Taketo MM, Petry M, Kispert A. Canonical Wnt signaling regulates the proliferative expansion and differentia-

82. Bohnenpoll T, Trowe MO, Wijahn I, Taketo MM, Petry M, Kispert A. Canonical Wnt signaling regulates the proliferative expansion and differentia-

85. Rensen SS, Doevendans PA, van Eys GJ. Regu-

