Concise Communication

Abstract

Angelman syndrome (AS) is a neurodevelopmental disorder in which epilepsy is common (~90%) and often refractory to antiepileptics. AS is caused by mutation of the maternal allele encoding the ubiquitin protein ligase E3A (UBE3A), but it is unclear how this genetic insult confers vulnerability to seizure development and progression (i.e., epileptogenesis). Here we implemented the flurothyl kindling and retest paradigm in AS model mice to assess epileptogenesis and to gain mechanistic insights owed to loss of maternal Ube3a. AS model mice kindled similarly to wildtype mice, but they displayed a markedly increased sensitivity to flurothyl-, kainic acid-, and hyperthermia-induced seizures measured a month later during retest. Pathological characterization revealed enhanced deposition of perineuronal nets in dentate gyrus of hippocampus of AS mice in the absence of overt neuronal loss or mossy fiber sprouting. This pro-epileptogenic phenotype resulted from Ube3a deletion in GABAergic but not glutamatergic neurons, and it was rescued by pancellular reinstatement of Ube3a at postnatal day 21 (P21), but not during adulthood. Our results suggest that epileptogenic susceptibility in AS patients is a consequence of the dysfunctional development of GABAergic circuits, which may be amenable to therapies leveraging juvenile reinstatement of UBE3A.

Authors

Bin Gu, Kelly E. Carstens, Matthew C. Judson, Katherine A. Dalton, Marie Rougié, Ellen P. Clark, Serena M. Dudek, Benjamin D. Philpot

×

Abstract

The loss of insulin-secreting β cells is characteristic among Type I and Type II diabetes. Stimulating proliferation to expand sources of β cells for transplantation remains a challenge because adult β cells do not proliferate readily. The cell cycle inhibitor p57 has been shown to control cell division in human β cells. Expression of p57 is regulated by the DNA methylation status of the Imprinting Control Region 2 (ICR2), which is commonly hypomethylated in Beckwith Wiedemann-Syndrome patients who exhibit massive β cell proliferation. We hypothesized that targeted demethylation of the ICR2 using a transcription activator-like effector protein fused to the catalytic domain of TET1 (ICR2-TET1) would repress p57 expression and promote cell proliferation. We report here that overexpression of ICR2-TET1 in human fibroblasts reduces p57 expression levels and increases proliferation. Furthermore, human islets overexpressing ICR2-TET1 exhibit repression of p57 with concomitant upregulation of Ki-67 while maintaining glucose-sensing functionality. When transplanted into diabetic, immunodeficient mice, the epigenetically edited islets show increased β cell replication compared to control islets. These findings demonstrate that epigenetic editing is a promising tool for inducing β cell proliferation, which may one day alleviate the scarcity of transplantable β cells for the treatment of diabetes.

Authors

Kristy Ou, Ming Yu, Nicholas G. Moss, Yue J. Wang, Amber W. Wang, Son C. Nguyen, Connie Jiang, Eseye Feleke, Vasumathi Kameswaran, Eric F. Joyce, Ali Naji, Benjamin Glaser, Dana Avrahami, Klaus H. Kaestner

×

Abstract

In the era of combined antiretroviral therapy (cART), lung diseases such as chronic bronchitis (CB) and COPD are common among persons living with HIV (PLWH), particularly smokers. Although smoking is highly prevalent among PLWH, HIV may be an independent risk factor for lung diseases; however, the role of HIV and cigarette smoke (CS) and their potential interaction in the development of chronic lung diseases among PLWH has not been delineated. To investigate this interaction, cynomolgus macaques were exposed to CS and/or simian-adapted human immunodeficiency virus (SHIV) and treated with cART. The development of CB and the lung functions were evaluated following CS±SHIV treatment. The results showed that in the lung, SHIV was a strong independent risk factor for goblet cell metaplasia/hyperplasia and mucus formation, MUC5AC synthesis, loss of tight junction proteins, and increased expression of Th2 cytokines/transcription factors. In addition, SHIV and CS synergistically reduced the lung function and increased the extrathoracic tracheal ring thickness. Interestingly, SHIV-infection generated significant numbers of HIV-gp120+ epithelial cells (HGECs) in small airways and alveoli and their numbers doubled in CS+SHIV-infected lungs. We conclude that even with cART, SHIV independently induces CB and pro-COPD changes in the lung and the effects are exacerbated by CS.

Authors

Hitendra S. Chand, Rodrigo Vazquez-Guillamet, Christopher M. Royer, Karin Rudolph, Neerad C. Mishra, Shashi P. Singh, Shah S. Hussain, Edward G. Barrett, Shannon Callen, Siddappa N. Byrareddy, Maria Cristina Vazquez Guillamet, Jawad Abukhalaf, Aryaz Sheybani, Vernat Exil, Veena Raizada, Hemant Agarwal, Madhavan Nair, Francois Villinger, Shilpa Buch, Mohan Sopori

×

Abstract

Hyperphosphatemic familial tumoral calcinosis (HFTC)/hyperostosis-hyperphosphatemia syndrome (HHS) is an autosomal recessive disorder of ectopic calcification due to deficiency of or resistance to intact fibroblast growth factor 23 (iFGF23). Inactivating mutations in FGF23, N-acetylgalactosaminyltransferase 3 (GALNT3), or KLOTHO have been reported to cause HFTC/HHS. We present the first identified case of autoimmune hyperphosphatemic tumoral calcinosis in an 8-year-old boy. In addition to the classical clinical and biochemical features of hyperphosphatemic tumoral calcinosis, the patient exhibited markedly elevated intact and C-terminal FGF23 levels suggestive of FGF23 resistance. However, no mutations in FGF23, KLOTHO, or fibroblast growth factor receptor 1 (FGFR1) were identified. He subsequently developed type 1 diabetes mellitus, which raised the possibility of an autoimmune cause for hyperphosphatemic tumoral calcinosis. Luciferase immunoprecipitation systems revealed significantly elevated FGF23 autoantibodies without detectable FGFR1 or KLOTHO autoantibodies. Using an in vitro FGF23 functional assay, the FGF23 autoantibodies in the patient’s plasma blocked downstream signaling via the MAPK/ERK signaling pathway in a dose-dependent manner. Thus, this report describes the first case of autoimmune hyperphosphatemic tumoral calcinosis with pathogenic autoantibodies targeting FGF23. Identification of this pathophysiology extends the etiologic spectrum of hyperphosphatemic tumoral calcinosis and suggests that immunomodulatory therapy may be an effective treatment.

Authors

Mary Scott Roberts, Peter D. Burbelo, Daniela Egli-Spichtig, Farzana Perwad, Christopher J. Romero, Shoji Ichikawa, Emily G. Farrow, Michael J. Econs, Lori C. Guthrie, Michael T. Collins, Rachel I. Gafni

×

Abstract

Neutrophil extracellular traps (NETs) are involved in the pathogenesis of many infectious diseases, yet their dynamics and impact on HIV/SIV infection were not yet assessed. We hypothesized that SIV infection and the related microbial translocation trigger NET activation and release (NETosis), and investigated the interactions between NETs and immune cell populations and platelets. We compared and contrasted the levels of NETs between SIV-uninfected, SIV-infected, and SIV-infected antiretroviral-treated nonhuman primates. We also cocultured neutrophils from these animals with either peripheral blood mononuclear cells or platelets. Increased NET production was observed throughout SIV infection. In chronically infected animals, NETs were found in the gut, lung, liver, and in the blood vessels of kidney and heart. ART decreased NETosis, albeit above preinfection levels. NETs captured CD4+ and CD8+ T-cells, B-cells, and monocytes, irrespective of their infection status, potentially contributing to the indiscriminate generalized immune cell loss characteristic to HIV/SIV infection, and limiting the CD4+ T-cell recovery under ART. By capturing and facilitating aggregation of platelets, and through expression of increased tissue factor levels, NETs may also enhance HIV/SIV-related coagulopathy and promote cardiovascular comorbidities.

Authors

Ranjit Sivanandham, Egidio Brocca-Cofano, Noah Krampe, Elizabeth Falwell, Sindhuja Murali Kilapandal Venkatraman, Ruy M. Ribeiro, Cristian Apetrei, Ivona Pandrea

×

Abstract

Hemagglutination inhibition (HI) titers are a major correlate of protection for influenza-related illness. The influenza virus hemagglutinin possesses antigenic sites that are the targets of HI active antibodies. Here, a panel of mutant viruses each lacking a classically defined antigenic site was created to compare the species-specific immunodominance of the antigenic sites in a clinically relevant hemagglutinin. HI active antibodies of antisera from influenza-virus infected mice targeted sites Sb and Ca2. HI active antibodies of guinea pigs were not directed against any specific antigenic site, although trends were observed towards Sb, Ca2, and Sa. HI titers of antisera from infected ferrets were significantly affected by site Sa. HI active antibodies of adult humans followed yet another immunodominance pattern, where sites Sb and Sa were immunodominant. When comparing the HI profiles between different species by antigenic cartography, animals and humans grouped separately. This study provides characterizations of the antibody-mediated immune responses against the head domain of a recent H1 hemagglutinin in animals and humans.

Authors

Sean T.H. Liu, Mohammad Amin Behzadi, Weina Sun, Alec W. Freyn, Wen-Chun Liu, Felix Broecker, Randy A. Albrecht, Nicole M. Bouvier, Viviana Simon, Raffael Nachbagauer, Florian Krammer, Peter Palese

×

Abstract

Hypoglycemia activates the counterregulatory response (CRR), a neural-endocrine reflex that restores euglycemia. Although effective if occasionally activated, repeated induction of the CRR leads to a decline in responsiveness and prolonged exposure to hypoglycemia. The mechanism underlying this impairment is not known. We found that the reduction in epinephrine release that characterizes a suppressed CRR involves a long-lasting form of sympatho-adrenal synaptic plasticity. Using optogenetically evoked catecholamine release, we show that recurrent hypoglycemia reduced the secretory capacity of mouse adrenal chromaffin cells. Single activation of the CRR increased the adrenal levels of tyrosine hydroxylase (TH), the rate-limiting enzyme for catecholamine synthesis, but this was prevented by repeated activation. In contrast, the level of neuropeptide Y (NPY), an adrenal cotransmitter, remained elevated after recurrent hypoglycemia. Inhibition of NPY or Y1 signaling, either transgenically or pharmacologically, prevented the attenuation of both TH expression and epinephrine release. These results indicate that impairment of the CRR involves suppressed activity at the adrenal level. Interfering with the peripheral NPY–dependent negative feedback loop may provide a way to avoid the pathophysiological consequences of recurrent hypoglycemia which are common in the diabetic state.

Authors

Yunbing Ma, Qian Wang, Debria Joe, Manqi Wang, Matthew D. Whim

×

Abstract

Intestinal homeostasis depends on a slowly proliferating stem cell compartment in crypt cells, followed by rapid proliferation of committed progenitor cells in the transit amplifying (TA) compartment. The balance between proliferation and differentiation in intestinal stem cells (ISCs) is regulated by Wnt/β-catenin signaling, although the mechanism remains unclear. We previously targeted PORCN, an enzyme essential for all Wnt secretion, and demonstrated that stromal production of Wnts was required for intestinal homeostasis. Here, a PORCN inhibitor was used to acutely suppress Wnt signaling. Unexpectedly, the treatment induced an initial burst of proliferation in the stem cell compartment of the small intestine, due to conversion of ISCs into TA cells with a loss of intrinsic ISC self-renewal. This process involved MAPK pathway activation, as the proliferating cells in the base of the intestinal crypt contained phosphorylated ERK1/2, and a MEK inhibitor attenuated the proliferation of ISCs and their differentiation into TA cells. These findings suggest a role for Wnt signaling in suppressing the MAPK pathway at the crypt base to maintain a pool of ISCs. The interaction between Wnt and MAPK pathways in vivo has potential therapeutic applications in cancer and regenerative medicine.

Authors

Zahra Kabiri, Gediminas Greicius, Hamed Zaribafzadeh, Amanda Hemmerich, Christopher M. Counter, David M. Virshup

×

Abstract

Ciliopathies are clinically overlapping genetic disorders involving structural and functional abnormalities of cilia. Currently, there are no small-molecule drugs available to treat ciliary defects in ciliopathies. Our phenotype-based screen identified the flavonoid eupatilin and its analogs as lead compounds for developing ciliopathy medication. CEP290, a gene mutated in several ciliopathies, encodes a protein that forms a complex with NPHP5 to support the function of the ciliary transition zone. Eupatilin relieved ciliogenesis and ciliary receptor delivery defects resulting from deletion of CEP290. In rd16 mice harboring a blinding Cep290 in-frame deletion, eupatilin treatment improved both opsin transport to the photoreceptor outer segment and electrophysiological responses of the retina to light stimulation. The rescue effect was due to eupatilin-mediated inhibition of calmodulin binding to NPHP5, which promoted NPHP5 recruitment to the ciliary base. Our results suggest that deficiency of a ciliopathy protein could be mitigated by small-molecule compounds that target other ciliary components that interact with the ciliopathy protein.

Authors

Yong Joon Kim, Sungsoo Kim, Yooju Jung, Eunji Jung, Ho Jeong Kwon, Joon Kim

×

Abstract

Rearrangements involving the neurotrophic receptor kinase genes (NTRK1, NTRK2, and NTRK3; hereafter referred to as TRK) produce oncogenic fusions in a wide variety of cancers in adults and children. Although TRK fusions occur in <1% of all solid tumors, inhibition of TRK results in profound therapeutic responses resulting in breakthrough FDA-approval of the TRK inhibitor larotrectinib for adult and pediatric solid tumor patients regardless of histology. In contrast to solid tumors, the frequency of TRK fusions and clinical effects of targeting TRK in hematologic malignancies is unknown. Here, through an evaluation for TRK fusions across > 7,000 patients with hematologic malignancies, we identified TRK fusions in acute lymphoblastic leukemia (ALL), acute myeloid leukemia (AML), histiocytosis, multiple myeloma and dendritic cell neoplasms. Although TRK fusions occurred in only 0.1% of patients (8 out of 7,311 patients), they conferred responsiveness to TRK inhibition in vitro and in vivo in a patient-derived xenograft and a corresponding AML patient with ETV6-NTRK2 fusion. These data identify that despite their individual rarity, collectively TRK fusions are present in a wide variety of hematologic malignancies and predict clinically significant therapeutic responses to TRK inhibition.

Authors

Justin Taylor, Dean Pavlick, Akihide Yoshimi, Christina Marcelus, Stephen S. Chung, Jaclyn F. Hechtman, Ryma Benayed, Emiliano Cocco, Benjamin H. Durham, Lillian Bitner, Daichi Inoue, Young Rock Chung, Kerry Mullaney, Justin M. Watts, Eli L. Diamond, Lee A. Albacker, Tariq I. Mughal, Kevin Ebata, Brian B. Tuch, Nora Ku, Maurizio Scaltriti, Mikhail Roshal, Maria Arcila, Siraj Ali, David M. Hyman, Jae H. Park, Omar Abdel-Wahab

×

No posts were found with this tag.